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Summary: The simultaneous testing of multiple hypotheses is common to the analysis of high-dimensional data sets.

The two-group model, first proposed in Efron (2004), identifies significant comparisons by allocating observations to

a mixture of an empirical null and an alternative distribution. In the Bayesian nonparametrics literature, many

approaches have suggested using mixtures of Dirichlet Processes in the two-group model framework. Here, we

investigate employing mixtures of two-parameter Poisson Dirichlet Processes (2PPD) instead, and show how they

provide a more flexible and effective tool for large-scale hypothesis testing. Our model further employs non-local

prior densities to allow separation between the two mixture components. We obtain a closed form expression for

the exchangeable partition probability function of the two-group model, which leads to a straightforward MCMC

implementation. We compare the performance of our method for large-scale inference in a simulation study and

illustrate its use on both a prostate cancer dataset and a case-control microbiome study of the gastrointestinal tracts

in children from underdeveloped countries who have been recently diagnosed with moderate to severe diarrhea.

Key words: Bayesian nonparametrics, Microbiome analysis, Multiple testing, Poisson–Dirichlet process, Two-
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1. Introduction

The availability of high-dimensional data in domains as diverse as genomics, imaging, and

astronomy, has brought the necessity to screen a large number of hypotheses simultaneously.

Here, we focus on the two-group modeling framework (Efron, 2004). To illustrate, we assume

that the observations are suitably defined difference scores zi, i = 1, . . . , n over a large number

of distinct hypotheses. The two-group model assumes that the zi’s are drawn either from a

null (f0) or a non-null (f1) distribution, i.e., each score is drawn from a mixture,

zi ∼ f = (1− ρ)f0 + ρf1, (1)

for some weight ρ ∈ (0, 1), and some probability (density) functions f0 and f1. The null

component is typically assumed standard normal; however, the true null distribution may

differ from the theoretical null, e.g., due to limited sample size or unaccounted correlation.

Thus, Efron proposes the estimation of an “empirical null” distribution to adequately capture

the range of parameter values coherent with the null hypothesis and accordingly evaluate

each testing decision.

In Bayesian nonparametrics, the Dirichlet process (DP) has been extensively used to

provide flexible estimates of f0, or f1, or both, as well as for clustering the zi’s into common

“expression” levels (Do et al., 2005; Dahl and Newton, 2007; Kim et al., 2009; Kottas and

Fellingham, 2012). ? develop a flexible hierarchical nonparametric approach where f0 is

assigned a Normal distribution with unknown mean and variance, whereas f1 is a location

mixture of normals. One appealing feature of the two-group model is that the resulting

inference is immediately amenable to interpretation in a decision theoretic framework. For

example, Efron (2004) describes a local version of the false discovery rate (local fdr), which

represents the posterior probability that a difference score zi is generated according to

the null hypothesis, fdr(zi) = (1 − ρ) f0(zi)/f(zi). The selection of interesting scores is

conducted by flagging all zi’s such that fdr(zi) < α, α ∈ (0, 1), allowing control of the
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Benjamini–Hochberg FDR (Benjamini and Hochberg, 1995) at level α. More generally, the

decision problem could minimize loss functions that compound expected false positive and

false negative decisions. The optimal decision would then lead to thresholding the posterior

probability of the alternative (e.g., see Muller et al., 2006).

In this manuscript, we investigate the use of a mixture prior of two–parameter Poisson–

Dirichlet (2PPD) processes in lieu of the commonly used DPs. The 2PPD process, also

known as the Pitman-Yor process, is a generalization of the DP and is characterized by two

parameters: a “concentration” parameter θ (analogous to the single parameter of the DP),

and a “discount” parameter σ. The additional parameter allows for more flexible clustering

behavior than the DP and can be used to tune the reinforcement mechanism of large clusters

(Lijoi et al., 2007). We show how the proper choice of σ can be used to model the empirical

null distribution f0 and the uncertainty related to the non-null distribution in the two-group

model, leading to improved testing procedures. Our modeling framework further employs

non-local prior densities for the base measure of the random probability measures under the

alternative hypothesis to allow better separation between the two mixture components. We

derive the expression of the exchangeable partition probability function (EPPF), induced

by the proposed two-group 2PPD mixture process and observe that, conditional on the

assignment of the observations to the null or the alternative hypothesis, the respective

random partitions are independent. This property conveniently facilitates posterior inference

obtained via MCMC algorithms, which take into account the conditional independence of

the partitions. By means of a simulation study, we discuss the performance of our method

with respect to the commonly used mixture of DPs and existing state-of-the-art approaches

for large-scale multiple comparison problems. We also illustrate the use of the proposed

2PPD processes mixture model on two publicly available datasets: a well-known Prostate

cancer dataset (Singh et al., 2002) and one collected from a recent microbiome study (Pop
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et al., 2014). In the latter case, the aim was to characterize the microbial composition of the

gastrointestinal tracts of children from underdeveloped countries who have been diagnosed

with moderate to severe diarrhea. Our study suggests that mixture of DPs should be used

with some caution in large scale multiple-testing, and that the use of 2PPD processes could

lead to improved operating characteristics.

2. A review of the 2PPD process

In this Section we provide an overview of the 2PPD process with particular regard to its

use for density estimation and its clustering properties. Let Z1, . . . , Zn be a sample of n

data measurements (e.g. raw observations or summary statistics), drawn from a sequence of

exchangeable random elements Z1, Z2, . . ., taking value in a complete and separable metric

space Z endowed with its Borel σ-algebra Z . By virtue of the de Finetti representation

theorem,

Zi | p̃
iid∼ p̃ i = 1, . . . , n,

p̃ ∼ Q,

(2)

for any n > 1, and for p̃, a random probability measure, with distribution Q defined on

the space P(Z) of probability measures on Z. In a Bayesian framework, Q represents the

prior distribution and the model is said to be parametric whenever Q degenerates on a finite

dimensional subspace of P(Z); otherwise, the model is denoted as nonparametric.

Here, we consider the 2PPD process for the random probability measure p̃, which can be

represented almost surely as an infinite mixture, i.e., p̃ =
∑∞

k=1 w̃k δYk , where δc denotes the

point mass at c, the w̃k’s are random weights obtained as w̃1 = V1 and w̃k = Vk
∏k−1

j=1 (1−Vj),

k > 2 with Vj
ind∼ Beta(1− σ, θ + jσ), j > 1 (stick-breaking construction; Pitman, 1995), for

some σ ∈ [0, 1) and θ > −σ. The Yk’s are random locations in Z, independent of the weights

w̃k’s, and assumed as random draws from a non-atomic base measure P ∗, i.e., Yk
iid∼ P ∗, k > 1,
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which represents the prior expected value of the random distribution p̃, i.e., E[p̃(A)] = P ∗(A)

for any A ∈ Z . We should note that the 2PPD process is also well defined for σ < 0 and

θ = r|σ|, with r being an integer; however, in such case the process reduces to the parametric

Fisher model (Ghosal and van der Vaart, 2017). Hereafter, we will use Zi | p̃
iid∼ p̃, with

p̃
d
= 2PPD(σ, θ, P ∗), i = 1, . . . , n to indicate a sample from a 2PPD with parameters σ

and θ, and base measure P ∗. If Z1, . . . , Zn is a realization from an exchangeable sequence

driven by a 2PPD process, there is a positive probability of ties, i.e., P[Zi = Zj] > 0 for any

i 6= j. This clustering property often motivates the use of the 2PPD process in statistical

applications, e.g. to model data from heterogeneous populations.

The clustering behavior of the 2PPD process can also be investigated by considering the

exchangeable partition probability function (EPPF), which characterizes the probability that

Z1, . . . , Zn are partitioned into K distinct clusters with respective sizes n1, . . . , nK . For the

2PPD process, such probability is Π
(n)
K (n1, . . . , nK) =

∏K−1
j=1 (θ+jσ)

(θ+1)n−1

∏K
j=1(1 − σ)nj−1 for any

choice of positive integers n1, . . . , nK such that
∑K

i=1 ni = n, with K ∈ {1, . . . , n} and

(a)q = Γ(a+q)/Γ(a), for any non-negative integer q. The expression highlights how the values

of the parameters σ and θ affect the clustering structure induced by the 2PPD process. It is

well-known that if Kn denotes the number of distinct values recorded in a sample Z1, . . . , Zn

of an exchangeable sequence drawn according to a 2PPD(σ, θ) process, then Kn/n
σ → Sσ,θ as

n→∞ (almost surely) for some positive random variable Sσ,θ when σ ∈ (0, 1)(see Theorem

3.8 in Pitman, 2002). When σ = 0, we recover the clustering behavior of the Dirichlet process,

obtaining Kn/ log n → θ as n → ∞ (almost surely). Hence, the larger σ is, the larger the

number of clusters. Moreover, σ controls the reinforcement of the partition, i.e., the ability of

big clusters to attract even more observations, as highlighted by the predictive distribution
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of the 2PPD process,

P[Zn+1 ∈ A | Z1, . . . , Zn] =
θ + σKn

θ + n− 1
P ∗ +

Kn∑
j=1

nj − σ
θ + n− 1

δZ∗
j
(A),

where the probability that a new observation is assigned to an existing cluster, and assumes

value Z∗j , j = 1, . . . , Kn, is proportional to nj − σ. Therefore, values of σ close to 1 favor the

formation of a large number of clusters, most of which are singletons (Lijoi et al., 2007).

Finally, we consider the variability of realizations from a 2PPD process around the base

measure P ∗. The variance of the process is Var[p̃(A)] = 1−σ
θ+1

P ∗(A)[1−P ∗(A)], for any A ∈ Z

and j = 0, 1. Large values of σ correspond to random probability measures which are more

concentrated around the base measure P ∗. Therefore, one should expect that the empirical

distribution function of any sample Z1, . . . , Zn drawn from a 2PPD process with high values

of σ, Fn(b) = p̃(∞, b] =
∑∞

k=1 w̃k δZ∗
k
(∞, b], would be characterized by a large number of

weights w̃k of similar size. In the next Sections we will exploit these properties to guide the

use of the 2PPD process in the two-group model for multiple testing.

3. Methods

3.1 A two-group 2PPD model

The different clustering behavior that the 2PPD process exhibits as a function of σ can be

exploited for distinguishing between the null and alternative distributions in the two-group

model. More precisely, we first rewrite model (2) as the two–component mixture,

p̃ = (1− ρ) p̃0 + ρ p̃1, (3)

where p̃j ∼ 2PPD(σj, θj, P
∗
j ) represents the unknown distribution under the null and the

alternative hypotheses, for j = 0 and j = 1, respectively. Similarly as in (1), the mixture

weight ρ is a random variable independent of the p̃j’s and takes values in [0, 1]. We further

introduce an auxiliary binary random variable γi, i = 1, . . . , n, such that Zi ∼ p̃0 if γi = 0
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and Zi ∼ p̃1 if γi = 1. Thus, conditionally on the γ′is, we can rewrite (2)–(3) as

Zi | γi
ind∼ p̃γi , i = 1, . . . , n,

γi | ρ
iid∼ Bernoulli(ρ),

p̃γi ∼ 2PPD(σγi , θγi , P
∗
γi

),

(4)

with p̃0 and p̃1 independent, and assuming a Beta(a, b) distribution on ρ. The hyperpa-

rameters a and b influence the proportion of discoveries and can be tuned according to

the problem at hand. In genomic studies, one may want to enforce sparsity of discoveries,

with prior expected proportions E [ρ] = a
a+b

between 1% and 10% of the total number of

hypotheses. A lower value of E [ρ] typically results in lower posterior probabilities of the

alternative, although the relative ranking of the posterior probabilities is overall preserved.

We exploit the properties of the 2PPD process discussed in Section 2 and propose to

specify the hyperparameters of the null and non-null random probability measures in (4)

as follows. In accordance with Efron’s idea that the empirical null distribution should

capture only small departures from the theoretical null, we let p̃0 concentrate around the

theoretical null. Furthermore, we assume that there’s no good model a priori for the non-

null distribution. Therefore, p̃1 is allowed to vary more freely on the space of the alternative

distributions. Under the null distribution, the process should encourage the creation of a large

number of clusters each composed by few observations, so that the empirical distribution

well approximates the theoretical null. For the non-null distribution, we should expect a

more uneven distribution of the realizations. Based on those considerations, we propose to

set σ0 > σ1. We will discuss how such a choice might help discriminating between the null

and the alternative distribution in the multi-comparison problem.

We conclude this Section by considering the joint partition structure induced by model

(4) for a sample Z1, . . . , Zn | p̃
iid∼ p̃. Let Π

(n)
K,j(n1, . . . , nK) denote the EPPF of process
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p̃j, j = 0, 1, that is the probability that n observations are assigned to K different clus-

ters of sizes (n1, . . . , nK). For notational simplicity, we assume that Π
(n)
K+1,j(n1, ..., nK , 0) ≡

Π
(n)
K,j(n1, . . . , nK), for any j = 0, 1 and n1, . . . , nK > 1 such that

∑K
i=1 ni = n. Then the

following result provides the EPPF of the mixture of 2PPD processes as below:

Proposition 1. The EPPF associated to the mixture of 2PPD processes in (4) is given by:

Π
(n)
K (n1, . . . , nK) =

1

(a+ b)n

∑
i∈×Kj=1{0,nj}

(a)|i|(b)n−|i| ×

Π
(|i|)
K0,0

(i1, . . . , iK) Π
(n−|i|)
K1,1

(n1 − i1, . . . , nK − iK) (5)

where i = (i1, . . . , iK), |i| = i1 + · · · + iK, K0 = card{j : ij = nj} and K1 = K − K0. If

ik = nk or ik = 0 ∀k, we assume Π
(n)
K (i1, . . . , iK) = 1.

See Web Appendix B for a proof. Direct use of (5) is far from trivial. Nonetheless, the

expression lends itself to an interesting interpretation: conditional on the assignment of the

clusters to either p̃0 or p̃1, the respective random partitions are still independent. This remark

is useful for devising a suitable computational algorithm for posterior inference.

3.2 Bayesian hierarchical two-group mixture model

In many applications, the discreteness of the realizations of the 2PPD process may be

considered inadequate. Thus, in lieu of (4), it is often common to assume for a sample

Z1, . . . , Zn a hierarchical mixture model with continuous components, i.e.

Zi|p̃
iid∼ p̃, with p̃ = (1− ρ)

∫
k0(Zi, ϑ) p̃0(dϑ) + ρ

∫
k1(Zi, ϑ) p̃1(dϑ), (6)

that is the two-group model is characterized by a null and non-null distributions which are

each defined as a 2PPD process mixture. Here, fp̃(Zi) is the random density induced by the

random probability measure p̃, while kj : Z×Θ→ R+, j = 0, 1 are general kernels such that

for ϑ ∈ Θ and some σ–finite measure λ on (Z,Z ) one has
∫
Z kj(x,ϑ)λ(dx) = 1, j = 0, 1.

For our purposes, it is convenient to set Z = R and let λ coincide with the Lebesgue measure
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on R so that the previous model defines a prior on the space of density functions on R. By

conditioning on the auxiliary group indicator variables γi, i = 1, . . . , n, we can rewrite model

(6) as a hierarchical Bayes two-group 2PPD process mixture,

Zi | ϑi, γi
ind∼ kγi(Zi | ϑi), i = 1, . . . , n

ϑi | γi, p̃
ind∼ p̃γi ,

γi | ρ
iid∼ Bernoulli(ρ),

ρ ∼ Beta(a, b)

p̃γi ∼ 2PPD(σγi , θγi , P
∗
γi

),

(7)

where ϑi may indicate either a scalar or a vector parameter. In general, k0(·) and k1(·)

could be different. Here, we assume kγ0(·) = kγ1(·) = k(·) to be a Normal kernel and set

ϑi = (µi, τ
2
i ). For notational simplicity, in (7) we have omitted additional hyperparameters

which may feature in the kernel function k(·) but are not relevant for the decision problem

and thus are assigned separate priors.

We conclude the specification of the two-group model (7) by discussing the choice of the

base measures P ∗0 and P ∗1 . On the one hand, we achieve flexible estimation of the so-called

“empirical null” distribution by setting P ∗0 (µ, τ 2) = π (µ) × π (τ 2) = N (0, 1) × IG (a0, b0) .

where the parameters of the IG on τ 2 are chosen so to allow relatively small deviations from

the theoretical null distribution. For example, by assuming a0 = 5, b0 = 0.2, the induced

marginal distribution on Zi has only slightly fatter tails than the standard normal.

Moreover, P ∗0 and P ∗1 should not have significantly overlapping supports, i.e. they should

assign high probability to regions of the parameter space that are consistent with the null

and the alternative hypotheses, respectively. In the Bayesian multiple hypotheses testing

framework, this requirement has sometimes been advocated to ensure enough separation

between the null and the alternative models. Thus, we first model P ∗1 as a symmetric bimodal

mixture of Normal-Inverse Gamma (NIG) distributions, as P ∗1 = 1
2
NIG(−|m1|, k1, α1, β1) +
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1
2
NIG(|m1|, k1, α1, β1), with m1 ∈ R, and k1, α1, β1 ∈ R+. Marginally,

π (µ1|m1) =
1

2

[√
β1
α1

t2α1 − |m1|

]
+

1

2

[√
β1
α1

t2α1 + |m1|

]
.

We further achieve separation in the multiple hypotheses testing problem by modeling the

location parameter m1 with a non-local prior (NLP), i.e. a prior that assigns vanishing

density to small neighborhoods of the null hypothesis (Johnson and Rossell, 2010). Several

types of NLP have been proposed in the literature. See, for instance, Rossell and Telesca

(2017). Here, we adopt an r-th moment (MOM) prior for m1, with

πMOM

(
m1; 0, κ2, r

)
=
m2r

1

ξ

e−m
2
1/2κ

2

√
2πκ2

, (8)

where ξ is the normalizing constant, and we write m1 ∼ NLPMOM (0, κ2, r). Specific hyper-

parameter specifications will be detailed in Section 4. Here, we only note that the non-local

prior specification in P ∗1 should provide enough separation from the origin to ensure good

estimation of the posterior probability of the alternative. Finally, the other parameters of

the 2PPD processes are set such that θ0 = θ1 and σ0 > σ1. In general, θ0 and θ1 are

chosen relatively small, in order to enforce coarser clustering structures, especially under the

alternative hypothesis. Typically, in Dirichlet-Process two-groups models, θ0 = θ1 = 1 (see,

e.g. Do et al., 2005). From the discussion at the end of Section 2, it follows that realizations

of the 2PPD null process are expected to be more concentrated around the base measure. In

the next Sections we will investigate the effect of different choices for the parameter values

of the 2PPD processes for the multiple comparison problem.

3.3 Posterior inference

Posterior inference for model (4) or (7) relies on Markov Chain Monte Carlo techniques since

the posterior distributions are not available in closed form. Our primary interest is in the

group indicators γi’s, which uniquely identify the random probability measure from which

the data Zi’s were generated, and, correspondingly, the probability of group membership, ρ.
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For the sampling of the γi’s, we exploit the independence of the random partitions implied

by the EPPF (5) of the proposed mixture of 2PPD processes. More specifically, if Z1, . . . , Zn

are a random sample from (4) and P ∗j , j = 0, 1 are non-atomic base measures with common

support, then P[Zi = Zj | γi 6= γj] = 0 for i 6= j. Thus, all the Zi’s in a cluster are generated

by the same 2PPD process. The details of the MCMC algorithms are provided in the Web

Appendix A. In particular, we employ a split-merge move to speed up computations for large

sample sizes (Dahl, 2005). The computational burden of the MCMC algorithm increases for

higher values of either θ0, θ1, σ0 or σ1 due to the increased number of latent clusters generated

by the 2PPD process. A discussion of the computational efficiency of a plain Pólya-Urn

sampler versus the split-merge implementation is also provided in the Web Appendix D.

Posterior inference on the weight ρ in (4) is conducted by means of post-MCMC analysis,

by approximating the posterior expected value E[ρ | data] using auxiliary indicators, say

γ∗t = (γ∗1,t, . . . , γ
∗
K(t),t

), which denote if cluster k ∈ 1, . . . K(t) at iteration t = 1, . . . , T is a

realization from p̃0 or p̃1. More precisely, if we denote by B < T the burn-in period of the

chain, we can compute the following Monte Carlo approximation of the posterior expected

value E[ρ | data] ≈ 1
T−B

∑T
t=B+1

a+
∑K(t)

k=1 nk,t(1−γ∗k,t)
a+b+n

.

Similarly, the posterior probability that an observation belongs to the non-null group can

be obtained from the MCMC output as PP 1
i = p(γi = 1 | data) ≈ 1

T−B
∑T

t=B+1 γi,t, where the

γi,t’s indicate the MCMC draws of the component indicators γi’s. Then, a score Zi is consid-

ered significant if the corresponding PP 1
i is larger than a threshold, say κ, chosen to control

the Bayesian FDR at a pre-assigned α× 100% level , BFDR (κ) =
∑V
ν=1(1−PP1

i )I(PP1
i >κ)∑V

ν=1 I(PP1
i >κ)

< α

(Newton et al., 2004; Muller et al., 2006).
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4. Applications

4.1 Simulation study

We investigate the performance of the Bayesian hierarchical 2PPD mixture modeling frame-

work described in (6)–(7) for large-scale multiple hypothesis testing by means of a simulation

study under S = 5 scenarios. More specifically, we simulate z-scores from mixture (1), where

f0(z) = N (z | 0, σ2
s). We set σ2

s = 1 for s = 1, . . . 4. For the fifth scenario, we set σ2
5 = 1.5

to model the effect of hidden correlation among observations and of the association with

unobserved covariates, that may lead to departures from standard Gaussianity. For f1 we

choose:

• Scenario 1: f1(z) = 0.67 · N (z| − 3, 2) + 0.33 · N (z|3, 2),

• Scenario 2: f1(z) = N (z | u, 1) with u ∼ Uniform(2, 4),

• Scenario 3: f1(z) = N (z | u, 1) with u ∼ Uniform([−4,−2] ∪ [2, 4]),

• Scenario 4: f1(z) = Gamma((−1)v · z | a, b) with a = 4, b = 1 and v ∼ Bernoulli(0.5),

• Scenario 5: f1(z) = 0.5 · N (z|5, 1) + 0.5 · N (z| − 5, 1) ,

i.e. f1 is assumed asymmetric unimodal (scenario 1), symmetric bimodal (scenarios 2),

asymmetric bimodal (scenario 3) and symmetric bimodal with fat tails (scenario 4 and

scenario 5), thus mimicking typical high-dimensional testing situations. An illustrative plot

of data generated under the five scenarios is provided in the Web Appendix C. In all scenarios,

we set ρ = 0.05, since typically only a small proportion of the comparisons is expected to

be significant in large-scale inference hypothesis testing. Each simulation includes n = 1, 000

simulated scores and is replicated 30 times to allow quantification of posterior uncertainty

and of the frequentist operating characteristics of the testing procedures.

[Table 1 about here.]

For model fitting, we employ the mixture model (6)–(7), where we assume k(· | θi) =
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Normal(· | ϑi), with ϑi = (µi, τ
2
i ). The base measure of the 2PPD process p̃0 is chosen

as described in Section 3.2, with a0 = 5, b0 = 0.2. For P ∗1 , we set k1 = 1/3, α1 = 1,

β1 = 1. A NLPMOM prior is assumed for m1, with r = 3 and κ = 2. For the parameters

characterizing the clustering behavior of the 2PPD process priors, we investigate the effect of

different choices of (σ0, σ1) on the inference, with σ0 > σ1. More specifically, here we report

the inference for the following values for the pair (σ0, σ1): (0.75, 0), which corresponds to

assuming a DP on the non-null component; in addition to (0.75, 0.1), (0.75, 0.25), (0.9, 0.25)

to investigate the effect of decreased prior uncertainty, V ar(p̃), on the components of the

two-group 2PPD mixture. We further set the concentration parameters θ0 = θ1 = 1 (Do

et al., 2005). For the Beta prior on ρ, we set a = 1 and b = 9. For each dataset, the MCMC

algorithm was run for 2,500 iterations after a 2,500 iterations burn-in period. The evaluation

of posterior convergence was conducted using standard Bayesian convergence diagnostics

on the chains of the traceable parameters, m1 and ρ, by monitoring the number of group

components and by inspecting the estimated densities of the null and non-null processes.

We compare the performance of our modeling approach with five alternative methods for

large-scale hypothesis testing: (a) a two-group DP mixture model, which can be seen as a

special case of the modeling framework proposed here, obtained by setting σ0 = σ1 = 0,

with a non-local prior on the base measure for the alternative distribution (b) the local false

discovery rate of Efron (2004); (c) the Benjamini and Hochberg procedure (BH, Benjamini

and Hochberg, 1995); (d) the empirical Bayes mixture model of Muralidharan (2012), which

allows simultaneous estimation of the effect size and of the local false discovery rate, and (e)

the empirical Bayes semi-parametric approach of ?.

For each simulation replicate, results were compared using several performance measures:

the Matthews Correlation Coefficient (MCC), which can be computed from a confusion ma-
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trix as MCC = (TP ×TN −FP ×FN)/
√

(TP + FP )(TP + FN)(TN + FP )(TN + FN),

where TP , TN , FP , and FN are the number of true positive, true negative, false positive

and false negative results, respectively; the F1 score, 2TP/(2TP + FP + FN); as well as

precision, specificity, accuracy and the area under the curve (AUC) of the corresponding

receiver operating characteristic curve. For each simulation, we identify significant scores by

controlling the Bayesian false discovery rate (Newton et al., 2004), the local false discovery

rate (Efron, 2004) and the frequentist false discovery rate (Benjamini and Hochberg, 1995)

at the 10% level.

[Table 2 about here.]

In Table 1 we report the performance metrics achieved in the different simulation scenarios

as a function of the combinations of hyperparameters of the 2PPD process. Overall, the

performance of the proposed 2PPD process is similar, as long as σ1 < σ0. Higher values of σ0

lead to draw samples from f0 which are closer to the theoretical null, but the implied tighter

control of the variance of the null process may lead to a slightly decreased performance in

some scenarios. If σ1 > σ0, the performance can deteriorate considerably.

Table 2 reports the results from the comparison with alternative multiple testing methods.

Compared to our method, the method of ? performs quite well in all scenarios except the

fat-tailed one, Scenario 4, where our 2PPD model outperforms four out of five competitors.

The BH procedure also performs quite well, although with slightly lower precision, in the

first four scenarios. However, small departures from the standard Gaussian null assumption

(scenario 5) considerably affect the performance of the BH procedure. The performance of

two-group DP mixtures is impacted by the flexible modeling of both the null and alternative

distribution, which leads to a relatively high number of false assignments. This result is

remarkable as various types of mixture of DP processes have been often proposed for hy-
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pothesis testing in the two-group modeling framework. The results also appear fairly robust

to different sample sizes (see Web Appendix E).

4.2 Case study: Microbiome data

We illustrate the applicability of the proposed two-group 2PPD process model on a publicly

available dataset of microbial abundances from a case-controlled study on post-diarrheal

disruption in children from low-income countries. The purpose of the study was to identify

potential microbiota which may show positive associations with moderate-to-severe diarrhea

(MSD) in the case group. Negative associations are also of interest since they may suggest

potential target treatments for recovery from dysbiosis.

Stool samples were obtained from 992 children between the ages of 0 and 59 months,

508 of whom had recently suffered from moderate to severe diarrhea, with the remaining 484

children acting as age-matched controls. The samples were obtained in Mali (M), the Gambia

(G), Kenya (K), and Bangladesh (B) and case/control proportions were approximately equal

for each country.

[Figure 1 about here.]

Due to the nature of the sampling mechanism, the distribution of the microbiome counts is

highly skewed, i.e., a few are highly abundant, whereas most microbes have low frequencies

(Chen and Li, 2016). Here, we are interested in evaluating the ability of our model to identify

microbiota which may be differently abundant in healthy and MSD subjects. Therefore,

we employ a Negative-Binomial regression model on the taxonomic abundances yij, where

j = 1, . . . , Ji indexes the microbiotic taxa, and i = 1, . . . , n indexes the samples. As it is

typical when dealing with sequencing data (see, e.g., Witten, 2011), we let si denote an

estimate of a sample-specific size factor, to take into account the different sequencing depths

of the samples. Also, we let xcaseij , xageij and xcountryij denote the three available covariates for

the MSD status, age and country. More specifically, xcaseij = 1 for cases and xcaseij = 0 for the
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matched controls. We adopt Gambia as the reference value for the other countries, and let

xKij , x
B
ij, and xMij be dummy variables for the other countries. Then, we assume:

yij
ind∼ NB(µij, αj), j = 1, . . . , Ji; i = 1, . . . , n,

log(µij) = log(si) + β0,j + β1,j x
case
ij + β2,j x

age
ij + β3,j x

M
ij + β4,j x

B
ij + β5,j x

K
ij + εij,

where αj represents a taxon-specific dispersion parameter, and β0,j represents a taxon-specific

effect, which captures the abundance of taxon j in the control group, and the βk,j’s represent

the effects of each covariate on the taxon abundance. The Negative Binomial distribution

was chosen due to its flexibility over the Poisson alternative. The model was fitted using the

glmmTMB package. To illustrate our multiple testing procedure, we consider the fixed case-

control effect captured by the estimates of the coefficients β1,j’s, which provide the z-scores

for testing the differences in abundance between healthy and MSD subjects. A histogram of

the 535 z-scores from the data is given in Figure 1. Since the estimated coefficients are a

function of the original data, the independence assumption may not be satisfied if the original

taxonomic abundances are correlated. Indeed, the presence of hidden correlation among the

observables and unknown associations with unobserved covariates are major motivations for

the two-group model formulation in Efron (2004).

In the two-group model (6)–(7), we fix the hyperparameters for the prior processes as

θ0 = θ1 = 1, σ0 = 0.75, σ1 = 0.10. The specific choice for σ0 allows small departures of the

empirical null from the theoretical N (0, 1) distribution, while maintaining computational

feasibility in the generation of the latent clusters from the null. A Beta(1, 99) is chosen for

ρ to further encourage sparsity of discoveries. The hyperparameters of the base measures

were set as in Section 4.1. For the results provided here, we run 20,000 iterations after

20,000 iterations as burn-in. Figure 1 overlays the Monte Carlo estimates of the posterior

probability of each taxon belonging to the non-null distribution to the histogram of the z-
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scores. By thresholding the Monte Carlo estimate of posterior probability of the non-null

process at a value corresponding to a Bayesian false discovery rate (Newton et al., 2004) of

1%, we identify a total of 74 non-null taxa. On the contrary, the BH procedure leads to 143

significant microbes, when controlling the FDR at the 1% level. The locfdr model detects as

relevant only 6 taxa. Tables 1 and 2 in the Web Appendix F report the taxa with the highest

discovery probabilities, separately for positive and negative z-scores. A close inspection of

our results reveals some interesting biological findings (see Web Appendix G).

4.3 Case study: Prostate Cancer Dataset

To assess how our model performs in large-sample cases, we apply our methodology to the

widely known Prostate dataset of Singh et al. (2002). See also Efron (2009). We exploit the

split-merge move in the MCMC to improve computational efficiency (see Web Appendix D).

The dataset is composed of 6,033 genes for 102 observations from 52 prostate cancer patients

and 50 healthy men. We adopt the same prior specification as in the microbiome case study,

with the exception that here we set b = 9, as in the simulation studies. This choice is in

accordance with the discussion in Efron (2008), who suggests a proportion a priori of no

more than 10% non-null genes for these data. Figure 2 reports the posterior probabilities of

discovery for this dataset. When thresholding the BFDR at the 20% level, our method flags

only 18 genes as relevant. Similarly, the locfdr procedure flags 19 genes. On the contrary,

the BH procedure identifies 60 genes as significant, even when thresholding the FDR at the

10% level.

[Figure 2 about here.]

5. Discussion and Conclusion

We have considered the two-group model by Efron (2004) for multiple hypotheses testing and

we have proposed the use of a mixture prior of two–parameter Poisson–Dirichlet processes as
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a flexible class of prior processes in that framework. In particular, an appropriate choice of

the hyperparameters of the 2PPD processes allows the characterization of small departures

from the theoretical null in the estimation of the empirical null distribution, while leaving

flexibility in the modeling of the non-null distribution. We have also employed a mixture

of non-local prior densities as base measure for the alternative distribution, to improve

separation and facilitate the estimation and identifiability of the mixture components. The

proposed approach has been shown to provide a robust testing procedure, which compares

favorably with recently proposed methods for estimating the components of the two-group

model, including the widely-used DP mixture models. A limitation of the procedure is related

to the computing effort, since Markov chain Monte Carlo algorithms for Bayesian nonpara-

metric models typically require considerable computational time for posterior inference. To

provide an illustration, in the analysis of the Prostate cancer dataset of Section 4.3, it

took approximately 56 hours to run 20,000 MCMC iterations on a Xeon(R) E5-2640 v4,

2.40GHz Linux sever, with the computational bottleneck being represented by the iterations

requiring a full Pólya-Urn sampling. Variational Bayes techniques have been developed for

many Bayesian nonparametric models, including the 2PPD process (see, e.g. Jordan and Blei,

2006). However, the speed up of MCMC algorithms for Bayesian nonparametric models in

high-dimensional settings is still a topic of ongoing research (see, e.g., Canale et al., 2019).

A careful choice of the hyperparameters of the two-group 2PPD model is essential to

ensure good operating characteristics of the testing procedures. We have followed prevailing

practices and set θ0 = θ1 = 1 in both the simulations and the data analyses. Priors on θ0

and θ1 would need to incorporate constraints to facilitate the identification of the two-group

components.

Finally, in our data analyses, we have proposed a two-group model for the analysis of

data observed under two conditions. However, often the interest is in studying longitudinal
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changes of repeated measurements within a subject. Therefore, models that take into account

the temporal dependence of the hypotheses are required.

Data Availability Statement

The data that support the findings in this paper are openly available in the R packages

msd16s at http://doi.org/10.1186/gb-2014-15-6-r76 (Pop et al., 2014) and sda, at

https://CRAN.R-project.org/package=sda (Ahdesmaki et al., 2015).
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Figure 1. Microbiome data case study: Histogram of 535 z-scores obtained from the case
term (β1) in the Negative Binomial generalized linear mixed effects model. We superimpose
the posterior probabilities of the events {γi = 1|z} and the threshold corresponding to a
Bayesian FDR of 1%.
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Figure 2. Prostate dataset: Histogram of 6033 z-scores obtained from a two-groups
comparison. We superimpose the posterior probabilities of the events {γi = 1|z} and the
threshold corresponding to a Bayesian FDR of 20%.
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Table 1
Simulation study: sensitivity results across different settings for σ0 and σ1 for the five simulation scenarios

considered in Section 4.1 (ρ = 0.05). The values in the table represent the average MCC and F1 scores, the average
precision (PRE), specificity (SPEC), accuracy (ACC) and the area under the curve (AUC) of the corresponding

receiver operating characteristic curve, over 30 replicates with corresponding standard deviations between brackets.

σ0 = 0.75 σ0 = 0.9

σ1 = 0 σ1 = 0.1 σ1 = 0.25 σ1 = 0.25

Scenario 1
MCC 0.5777 (0.0903) 0.5833 (0.0940) 0.6020 (0.0835) 0.5893 (0.0876)
F1 0.5197 (0.1125) 0.5269 (0.1169) 0.5520 (0.1051) 0.5342 (0.1095)
AUC 0.9095 (0.0245) 0.9143 (0.0224) 0.9201 (0.0253) 0.9200 (0.0207)
PRE 0.9775 (0.0357) 0.9773 (0.0333) 0.9713 (0.0346) 0.9776 (0.0328)
SPEC 0.9995 (0.0007) 0.9995 (0.0007) 0.9994 (0.0008) 0.9995 (0.0007)
ACC 0.9676 (0.0049) 0.9680 (0.0052) 0.9690 (0.0048) 0.9683 (0.0049)
Scenario 2
MCC 0.6249 (0.0673) 0.6242 (0.0695) 0.6212 (0.0681) 0.6135 (0.0644)
F1 0.5809 (0.0831) 0.5796 (0.0855) 0.5771 (0.0835) 0.5665 (0.0808)
AUC 0.9526 (0.0218) 0.9563 (0.0185) 0.9581 (0.0170) 0.9523 (0.0183)
PRE 0.9710 (0.0338) 0.9725 (0.0373) 0.9680 (0.0396) 0.9712 (0.0384)
SPEC 0.9993 (0.0008) 0.9994 (0.0009) 0.9993 (0.0009) 0.9993 (0.0009)
ACC 0.9703 (0.0043) 0.9703 (0.0044) 0.9701 (0.0043) 0.9696 (0.0040)
Scenario 3
MCC 0.5081 (0.0842) 0.5080 (0.0847) 0.5340 (0.0797) 0.5224 (0.0808)
F1 0.4320 (0.1053) 0.4320 (0.1056) 0.4659 (0.1001) 0.4489 (0.1018)
AUC 0.9335 (0.0235) 0.9401 (0.0238) 0.9477 (0.0180) 0.9452 (0.0209)
PRE 0.9721 (0.0438) 0.9714 (0.0425) 0.9682 (0.0402) 0.9772 (0.0360)
SPEC 0.9995 (0.0007) 0.9995 (0.0007) 0.9994 (0.0007) 0.9996 (0.0006)
ACC 0.9624 (0.0044) 0.9624 (0.0045) 0.9638 (0.0045) 0.9631 (0.0043)
Scenario 4
MCC 0.7513 (0.0462) 0.7554 (0.0462) 0.7625 (0.0461) 0.7572 (0.0478)
F1 0.7354 (0.0538) 0.7413 (0.0528) 0.7535 (0.0518) 0.7449 (0.0542)
AUC 0.9552 (0.0162) 0.9627 (0.0119) 0.9685 (0.0107) 0.9661 (0.0087)
PRE 0.9787 (0.0264) 0.9736 (0.0284) 0.9532 (0.0312) 0.9657 (0.0289)
SPEC 0.9993 (0.0009) 0.9991 (0.0010) 0.9984 (0.0013) 0.9988 (0.0010)
ACC 0.9789 (0.0034) 0.9792 (0.0035) 0.9797 (0.0035) 0.9794 (0.0036)
Scenario 5
MCC 0.8920 (0.0229) 0.8832 (0.0249) 0.8529 (0.0232) 0.8694 (0.0241)
F1 0.8951 (0.0219) 0.8860 (0.0241) 0.8534 (0.0235) 0.8710 (0.0238)
AUC 0.9985 (0.0010) 0.9985 (0.0010) 0.9985 (0.0011) 0.9985 (0.0011)
PRE 0.8346 (0.0300) 0.8170 (0.0334) 0.7560 (0.0330) 0.7856 (0.0326)
SPEC 0.9898 (0.0021) 0.9885 (0.0025) 0.9832 (0.0029) 0.9859 (0.0026)
ACC 0.9886 (0.0020) 0.9875 (0.0028) 0.9831 (0.0030) 0.9855 (0.0029)
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Table 2
Simulation study: performance metrics for five other multiple comparison methods in the five simulation scenarios

considered in Section 4.1 (ρ = 0.05). The values in the table represent the average MCC and F1 scores, the average
precision (PRE), specificity (SPEC), accuracy (ACC) and the area under the curve (AUC) of the corresponding

receiver operating characteristic curve, over 30 replicates with corresponding standard deviations between brackets.

DPmix local fdr Benjamini and Hochberg (1995) Muralidharan (2012) ?

Scenario 1
MCC 0.2329 (0.0209) 0.5708 (0.0721) 0.6629 (0.0648) 0.5379 (0.0804) 0.5835 (0.0757)
F1 0.1980 (0.0145) 0.5067 (0.0932) 0.6427 (0.0736) 0.4643 (0.1023) 0.5251 (0.0962)
AUC 0.9053 (0.0301) 0.8869 (0.0365) 0.9237 (0.0205) 0.9242 (0.0230) 0.9230 (0.0216)
PRE 0.1113 (0.0092) 0.9897 (0.0216) 0.9141 (0.0603) 0.9915 (0.0227) 0.9825 (0.0284)
SPEC 0.6150 (0.0432) 0.9998 (0.0004) 0.9974 (0.0019) 0.9999 (0.0004) 0.9996 (0.0006)
ACC 0.6297 (0.0396) 0.9671 (0.0042) 0.9726 (0.0044) 0.9653 (0.0043) 0.9679 (0.0044)
Scenario 2
MCC 0.2506 (0.0180) 0.6088 (0.0773) 0.6674 (0.0638) 0.5805 (0.0667) 0.6435 (0.0686)
F1 0.2037 (0.0138) 0.5578 (0.0991) 0.6486 (0.0721) 0.5194 (0.0857) 0.6048 (0.0846)
AUC 0.9524 (0.0218) 0.9231 (0.0428) 0.9544 (0.0169) 0.9668 (0.0174) 0.9762 (0.0087)
PRE 0.1140 (0.0087) 0.9796 (0.0304) 0.9129 (0.0556) 0.9895 (0.0216) 0.9698 (0.0332)
SPEC 0.6033 (0.0364) 0.9995 (0.0008) 0.9974 (0.0018) 0.9998 (0.0004) 0.9993 (0.0008)
ACC 0.6213 (0.0339) 0.9694 (0.0048) 0.9729 (0.0042) 0.9676 (0.0004) 0.9715 (0.0044)
Scenario 3
MCC 0.2337 (0.0195) 0.5397 (0.0854) 0.6544 (0.0578) 0.4840 (0.0883) 0.5591 (0.0740)
F1 0.1948 (0.0129) 0.4708 (0.1087) 0.6342 (0.0670) 0.3973 (0.1080) 0.4970 (0.0948)
AUC 0.9400 (0.0206) 0.9069 (0.0359) 0.9500 (0.0191) 0.9481 (0.0197) 0.9481 (0.0182)
PRE 0.1085 (0.0079) 0.9759 (0.0424) 0.9089 (0.0561) 0.9901 (0.0328) 0.9707 (0.0437)
SPEC 0.5679 (0.0349) 0.9995 (0.0008) 0.9972 (0.0020) 0.9999 (0.0005) 0.9994 (0.0010)
ACC 0.5880 (0.033) 0.9641 (0.0050) 0.9710 (0.0040) 0.9611 (0.0043) 0.9652 (0.0044)
Scenario 4
MCC 0.2671 (0.0194) 0.7080 (0.0474) 0.7849 (0.0443) 0.6840 (0.0486) 0.6831 (0.0470)
F1 0.2161 (0.0156) 0.6801 (0.0586) 0.7853 (0.0448) 0.6492 (0.0602) 0.6485 (0.0595)
AUC 0.9612 (0.0156) 0.9406 (0.0246) 0.9709 (0.0085) 0.9627 (0.0159) 0.9658 (0.0139)
PRE 0.1217 (0.0099) 0.9919 (0.0172) 0.9136 (0.0502) 0.9972 (0.0106) 0.9953 (0.0123)
SPEC 0.6288 (0.0345) 0.9998 (0.0005) 0.9965 (0.0023) 0.9999 (0.0003) 0.9999 (0.0004)
ACC 0.6459 (0.0325) 0.9758 (0.0033) 0.9812 (0.0036) 0.9741 (0.0034) 0.9741 (0.0032)
Scenario 5
MCC 0.2671 (0.0194) 0.8632 (0.0492) 0.7861 (0.0360) 0.8506 (0.0486) 0.8879 (0.0332)
F1 0.5303 (0.0420) 0.8611 (0.0529) 0.7792 (0.0395) 0.8475 (0.0414) 0.8888 (0.0338)
AUC 0.9980 (0.0012) 0.9971 (0.0041) 0.9986 (0.0010) 0.9985 (0.0012) 0.9985 (0.0011)
PRE 0.3622 (0.0163) 0.9811 (0.0286) 0.6433 (0.0531) 0.9866 (0.0229) 0.9745 (0.0323)
SPEC 0.9058 (0.0155) 0.9992 (0.0013) 0.9705 (0.0067) 0.9994 (0.0009) 0.9988 (0.0015)
ACC 0.9104 (0.0385) 0.9878 (0.0041) 0.9716 (0.0064) 0.9867 (0.0032) 0.9899 (0.0028)
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