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Summary.The paper develops a unified theoretical and computational framework for false dis-
covery control in multiple testing of spatial signals. We consider both pointwise and clusterwise
spatial analyses, and derive oracle procedures which optimally control the false discovery rate,
false discovery exceedance and false cluster rate. A data-driven finite approximation strategy is
developed to mimic the oracle procedures on a continuous spatial domain. Our multiple-testing
procedures are asymptotically valid and can be effectively implemented using Bayesian com-
putational algorithms for analysis of large spatial data sets. Numerical results show that the
procedures proposed lead to more accurate error control and better power performance than
conventional methods. We demonstrate our methods for analysing the time trends in tropo-
spheric ozone in eastern USA.

Keywords: Compound decision theory; False cluster rate; False discovery exceedance; False
discovery rate; Large-scale multiple testing; Spatial dependence

1. Introduction

Let X ={X.s/ : s∈S} be a random field on a spatial domain S:

X.s/=μ.s/+ ".s/, .1:1/

where μ.s/ is the unobserved random process and ".s/ is the noise process. Assume that there
is an underlying state θ.s/ that is associated with each location s with one state being dominant
(‘background’). In applications, an important goal is to identify locations that exhibit significant
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deviations from background. This involves conducting a large number of spatially correlated
tests simultaneously. It is desirable to maintain good power for detecting true signals while
guarding against too many false positive findings. The false discovery rate FDR (Benjamini and
Hochberg, 1995) approach is particularly useful as an exploratory tool to achieve these two goals
and has received much attention in the literature. In a spatial setting, the multiple-comparison
issue has been raised in a wide range of problems such as brain imaging (Genovese et al., 2002;
Heller et al., 2006; Schwartzman et al., 2008), disease mapping (Green and Richardson, 2002),
public health surveillance (Caldas de Castro and Singer, 2006), network analysis of genomewide
association studies (Wei and Li, 2007; Chen et al., 2011) and astronomical surveys (Miller et al.,
2007; Meinshausen et al., 2009).

Consider the following example for analysing time trends in tropospheric ozone in the eastern
USA. Ozone is one of the six criteria pollutants that are regulated by the US Environmental Pro-
tection Agency under the Clean Air Act and has been linked with several adverse health effects.
The Environmental Protection Agency has established a network of monitors for regulation of
ozone, as shown in Fig. 1(a). We are interested in identifying locations with abrupt changing
ozone levels by using the ozone concentration data that are collected at monitoring stations.
In particular, we wish to study the ozone process for predefined subregions, such as counties
or states, to identify interesting subregions. Similar problems may arise from disease mapping
problems in epidemiology, where the goal is to identify geographical areas with elevated inci-
dence of disease rates. It is also desirable to take into account region-specific variables, such as
the population in or the area of a county, to reflect the relative importance of each subregion.

Spatial multiple testing poses new challenges which are not present in conventional multiple-
testing problems. Firstly, one observes data points only at a discrete subset of the locations but
often needs to make inference everywhere in the spatial domain. It is thus necessary to develop
a testing procedure which effectively exploits the spatial correlation and pools information from
nearby locations. Secondly, a finite approximation strategy is needed for inference in a contin-
uous spatial domain—otherwise an uncountable number of tests needs to be conducted, which
is impossible in practice. Thirdly, it is challenging to address the strong dependence in a two-
or higher dimensional random field. Finally, in many important applications, it is desirable to
aggregate information from nearby locations to make clusterwise inference, and to incorporate
important spatial variables in the decision-making process. The goal of the present paper is to
develop a unified theoretical and computational framework to address these challenges.

The effect of dependence has been extensively studied in the multiple-testing literature. Efron
(2007) and Schwartzman and Lin (2011) showed that correlation usually degrades statistical
accuracy, affecting both estimation and testing. High correlation also results in high variability
of testing results and hence the irreproducibility of scientific findings; see Owen (2005), Finner
et al. (2007) and Heller (2010) for related discussions. Meanwhile, it has been shown that the
classical Benjamini–Hochberg procedure is valid for controlling the false discovery rate FDR
(Benjamini and Hochberg, 1995) under various dependence assumptions, indicating that it
is safe to apply conventional methods as if the tests were independent (see Benjamini and
Yekutieli (2001), Sarkar (2002), Wu (2008) and Clarke and Hall (2009), among others). Another
important research direction in multiple testing is the optimality issue under dependence. Sun
and Cai (2009) introduced an asymptotically optimal FDR procedure for testing hypotheses
arising from a hidden Markov model and showed that the hidden Markov model dependence
can be exploited to improve the existing p-value-based procedures. This demonstrates that
informative dependence structure promises to increase the precision of inference. For example,
in genomewide association studies, signals from individual markers are weak; hence several
approaches have been developed to increase statistical power by aggregating multiple markers
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Fig. 1. Ordinary least squares analysis of the ozone data, conducted separately at each site: (a) first-stage
analysis, β̂.s/; (b) first-stage z-scores, z.s/D β̂.s/=w.s/
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and exploiting the high correlation between adjacent loci (for example, see Peng et al. (2009),
Wei et al. (2009) and Chen et al. (2011)). When the intensities of signals have a spatial pattern,
it is expected that incorporating the underlying dependence structure can significantly improve
the power and accuracy of conventional methods. This intuition is supported both theoretically
and numerically in our work.

In this paper, we develop a compound decision theoretic framework for spatial multiple test-
ing and propose a class of asymptotically optimal data-driven procedures that control FDR, the
false discovery exceedance FDX and false cluster rate FCR. Widely used Bayesian modelling
frameworks and computational algorithms are adopted to extract information effectively from
large spatial data sets. We discuss how to summarize the fitted spatial models by using posterior
sampling to address related multiple-testing problems. The control of FDX and FCR is quite
challenging from the classical perspective. We show that the FDR, FDX and FCR controlling
problems can be solved in a unified theoretical and computational framework. A finite approxi-
mation strategy for inference on a continuous spatial domain is developed and it is shown that a
continuous decision process can be described, within a small margin of error, by a finite number
of decisions on a grid of pixels. This overcomes the limitation of conventional methods which
can only test hypotheses on a discrete set of locations where observations are available. Simu-
lation studies are carried out to investigate the numerical properties of the methods proposed.
The results show that, by exploiting the spatial dependence, the data-driven procedures lead to
better rankings of hypotheses, more accurate error control and enhanced power.

The methods proposed are developed in a frequentist framework and aim to control the fre-
quentist FDR. The Bayesian computational framework, which involves hierarchical modelling
and Markov chain Monte Carlo (MCMC) computing, provides a powerful tool to implement
the data-driven procedures. When the goal is to control FDR and tests are independent, our
procedure coincides with the Bayesian FDR approach that was originally proposed by New-
ton et al. (2004). Müller et al. (2004, 2007) showed that controlling the Bayesian FDR implies
FDR-control. However, those type of results do not immediately extend to correlated tests (see
remark 4 in Pacifico et al. (2004) and Guindani et al. (2009)). In addition, existing literature on
Bayesian FDR analysis (Müller et al., 2004, 2007; Bogdan et al., 2008) has focused on pointwise
FDR control only, and the issues related to FDX and FCR have not been discussed. In contrast,
we develop a unified theoretical framework and propose testing procedures for controlling dif-
ferent error rates. The methods are attractive by providing effective control of the widely used
frequentist FDR.

The paper is organized as follows. Section 2 introduces appropriate false discovery measures
in a spatial setting. Section 3 presents a decision theoretic framework to characterize the optimal
decision rule. In Section 4, we propose data-driven procedures and discuss the computational
algorithms for implementation. Sections 5 and 6 investigate the numerical properties of the
proposed procedures using both simulated and real data. The proofs and technical details in
computation are given in Appendix A.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. False discovery measures for spatial multiple testing

In this section we introduce some notation and important false discovery measures in a ran-
dom field, following the works of Pacifico et al. (2004) and Benjamini and Heller (2007). Both
pointwise analysis and clusterwise analysis will be considered.
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2.1. Pointwise inference
Suppose that, for each location s, we are interested in testing the hypothesis

H0.s/ :μ.s/∈A versus H1.s/ :μ.s/∈Ac, .2:1/

where A is the indifference region, e.g. A={μ :μ�μ0} for a one-sided test and A={μ : |μ|�μ0}
for a two-sided test. Let θ.s/∈{0, 1} be an indicator such that θ.s/=1 if μ.s/∈Ac and θ.s/=0
otherwise. Define S0 ={s∈S :θ.s/=0} and S1 ={s∈S :θ.s/=1} as the null and non-null areas
respectively. In a pointwise analysis, a decision δ.s/ is made for each location s. Let δ.s/ = 1
if H0.s/ is rejected and δ.s/= 0 otherwise. The decision rule for the whole spatial domain S is
denoted by δ ={δ.s/ : s ∈S}. Then R={s ∈S : δ.s/= 1} is the rejection area, and SFP ={s ∈S :
θ.s/ = 0, δ.s/ = 1} and SFN = {s ∈ S : θ.s/ = 1, δ.s/ = 0} are the false positive and false negative
areas respectively. Let ν.·/ denote a measure on S, where ν.·/ is the Lebesgue measure if S

is continuous and a counting measure if S is discrete. When the interest is to test hypotheses
at individual locations, it is natural to control the false discovery rate FDR (Benjamini and
Hochberg, 1995), which is a powerful and widely used error measure in large-scale testing
problems. Let c0 be a small positive value. In practice if the rejection area is too small, then we
can proceed as if no rejection is made. Define the false discovery proportion as

FDP= ν.SFP/

ν.R/
I{ν.R/>c0}: .2:2/

FDR is the expected value of FDP: FDR=E.FDP/. Alternative measures to FDR include the
marginal false discovery rate, mFDR=E{ν.SFP/}=E{ν.R/} (Genovese and Wasserman, 2002)
and positive false discovery rate pFDR (Storey, 2002).

FDP is highly variable under strong dependence (Finner and Roters, 2002; Finner et al., 2007;
Heller, 2010). The false discovery exceedance FDX, which was discussed in Pacifico et al. (2004),
Lehmann and Romano (2005) and Genovese and Wasserman (2006), is a useful alternative to
FDR. FDX-control takes into account the variability of FDP and is desirable in a spatial setting
where the tests are highly correlated. Let 0�τ �1 be a prespecified tolerance level: FDX at level
τ is FDXτ =P.FDP > τ /, the tail probability that FDP exceeds a given bound.

To evaluate the power of a multiple-testing procedure, we use the missed discovery rate
MDR = E{ν.SFN/}. Other power measures include the false non-discovery rate and average
power; our result can be extended to these measures without essential difficulty. A multiple-
testing procedure is said to be valid if the FDR can be controlled at the nominal level and
optimal if it has the smallest MDR among all valid testing procedures.

2.2. Clusterwise inference
When the interest is on the behaviour of a process over subregions, the testing units become
spatial clusters instead of individual locations. Combining hypotheses over a set of locations
naturally reduces multiplicity and correlation. In addition, setwise analysis improves statistical
power as data in a set may show an increased signal-to-noise ratio (Benjamini and Heller, 2007).
The idea of setwise or clusterwise inference has been successfully applied in many scientific
fields including large epidemiological surveys (Zaykin et al., 2002), meta-analysis of microarray
experiments (Pyne et al., 2006), gene set enrichment analysis (Subramanian et al., 2005) and
brain imaging studies (Heller et al., 2006).

The definition of a cluster is often application specific. Two existing methods for obtaining
spatial clusters include

(a) to aggregate locations into regions according to available prior information (Heller et al.,
2006; Benjamini and Heller, 2007) and
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(b) to conduct a preliminary pointwise analysis and to define the clusters after inspection of
the results (Pacifico et al., 2004).

Let C = {C1, : : : , CK} denote the set of (known) clusters of interest. We can form for each
cluster Ck a partial conjunction null hypothesis (Benjamini and Heller, 2008), H0.Ck/ : πk � γ
versus H1.Ck/ : πk > γ, where πk = ν[{s ∈ Ck : θ.s/ = 1}]=ν.Ck/ is the proportion of non-null
locations in Ck and 0�γ �1 is a prespecified tolerance level. The null hypothesis could also be
defined in terms of the average activation amplitude μ̄.Ck/ = ν.Ck/−1

∫
Ck

μ.s/ds, i.e. H0.Ck/ :
μ̄.Ck/� μ̄0 versus H1.Ck/ : μ̄.Ck/ > μ̄0, for some prespecified μ̄0. Each cluster Ck is associated
with an unknown state ϑk ∈{0, 1}, indicating whether the cluster shows a signal or not. Let S0 =
∪k:ϑk=0 Ck and S1 =∪k:ϑk=1 Ck denote the corresponding null and non-null areas respectively. In
clusterwise analysis, a universal decision rule is taken for all locations in the cluster, i.e. δ.s/=Δk,
for all s∈Ck. The decision rule is Δ= .Δ1, : : : , ΔK/. Then, the rejection area is R=∪k:Δk=1 Ck.

In many applications it is desirable to incorporate the cluster size or other spatial variables
in the error measure. We consider the weighted multiple-testing framework, which was first
proposed by Benjamini and Hochberg (1997) and further developed by Benjamini and Heller
(2007) in a spatial setting, to reflect the relative importance of various clusters in the decision
process. The general strategy involves the modifications of either the error rate to be controlled,
or the power function to be maximized or both. Define the false cluster rate

FCR=E

⎧⎪⎪⎨
⎪⎪⎩

∑
k

wk.1−ϑk/Δk(∑
k

wkΔk

)
∨1

⎫⎪⎪⎬
⎪⎪⎭, .2:3/

where wk are cluster-specific weights which are often prespecified in practice. For example, one
can take wk =ν.Ck/, the size of a cluster, to indicate that a false positive cluster with larger size
would account for a larger error. Similarly, we define the marginal FCR as

mFCR=
E

{∑
k

wk.1−ϑk/Δk

}

E

(∑
k

wkΔk

) :

We can see that, in the definition of FCR, a large false positive cluster is penalized by
a larger weight. At the same time, correctly identifying a large cluster that contains signal
may correspond to a greater gain; hence the power function should be weighted as well. For
example, in epidemic disease surveillance, it is critical to identify aberrations in areas with larger
populations where interventions should be first put into place. To reflect that some areas are
more crucial, we give a higher penalty in the loss function if an important cluster is missed.
The same weights wk are used as reflective of proportional error and gain. Define the missed
cluster rate MCR = E{Σk wkϑk.1−Δk/}: In clusterwise analysis the goal is to control FCR
while minimizing MCR.

3. Compound decision theory for spatial multiple testing

In this section we formulate a compound decision theoretic framework for spatial multiple-
testing problems and derive a class of oracle procedures for controlling FDR, FDX and FCR.
Section 4 develops data-driven procedures to mimic the oracle procedures and discusses their
implementations in a Bayesian computational framework.
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3.1. Oracle procedures for pointwise analysis
Let X1, : : : , Xn be observations at locations SÅ ={sÅ1 , : : : , sÅn }. In pointwise analysis, SÅ is often
a subset of S, and we need to make decisions at locations where no observation is available;
therefore the problem is different from conventional multiple-testing problems where each hy-
pothesis has its own observed data. It is therefore necessary to exploit the spatial dependence
and to pool information from nearby observations. In this section, we discuss optimal results
on pointwise FDR analysis from a theoretical perspective.

The optimal testing rule is derived in two steps: first the hypotheses are ranked optimally
and then a cut-off is chosen along the rankings to control FDR precisely. The optimal result
on ranking is obtained by connecting the multiple-testing problem to a weighted classification
problem. Consider a general decision rule δ ={δ.s/ : s∈S} of the form

δ.s/= I{T.s/< t}, .3:1/

where T.s/ = Ts.X
n/ is a test statistic, Ts.·/ is a function which maps Xn to a real value and t

is a universal threshold for all T.s/, s ∈ S. To separate a signal (θ.s/ = 1) from noise (θ.s/ = 0),
consider the loss function

L.θ, δ/=λν.SFP/+ν.SFN/, .3:2/

where λ is the penalty for false positive results, and SFP and SFN are false positive and false
negative areas defined in Section 2. The goal of a weighted classification problem is to find a
decision rule δ to minimize the classification risk R=E{L.θ, δ/}. It turns out that the optimal
solution to the weighted classification problem is also optimal for mFDR-control when a mono-
tone ratio condition (MRC) is fulfilled. Specifically, define Gj.t/=∫

S P{T.s/<t, θ.s/= j}dν.s/,
j =0, 1. G0.t/ can be viewed as the overall ‘type I error’ function at all locations in S where the
null hypothesis is true, and G1.t/ can be viewed as the overall ‘power’ function at all locations
in S where the alternative is true. In section XXX of the on-line supplementary material, we
show that it is reasonable to assume that G0 and G1 are differentiable when X.s/ are continuous
random variables on S. Denote by g0.t/ and g1.t/ their derivatives. The MRC can be stated
as

g1.t/=g0.t/ is monotonically decreasing in t: .3:3/

The MRC is a reasonable and mild regularity condition in multiple testing which ensures that
mFDR increases in t and MDR decreases in t. Therefore to minimize MDR, we choose the
largest threshold subject to mFDR �α. The MRC reduces to the monotone likelihood ratio
condition (Sun and Cai, 2007) when the tests are independent. The monotone likelihood ra-
tio condition is satisfied by the p-value when the p-value distribution is concave (Genovese
and Wasserman, 2002). In a hidden Markov model, the MRC is satisfied by the local index of
significance (Sun and Cai, 2009).

Let Xn ={X1, : : : , Xn}. Consider a class of decision rules D of the form δ={I{T.s/<t} :s∈S},
where T = {T.s/ : s ∈ S} satisfies the MRC (3.3). The following theorem derives the optimal
classification statistic and gives the optimal multiple-testing rule for mFDR control.

Theorem 1. Let Ψ be the collection of all parameters in random field (1.1) and we assume
that Ψ is known. Define the oracle statistic

TOR.s/=PΨ{θ.s/=0|Xn} .3:4/

and assume that Gj.t/ are differentiable, j =0, 1.
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(a) The classification risk is minimized by δ ={δ.s/ : s∈S}, where

δ.s/= I{TOR.s/<.1+λ/−1}: .3:5/

(b) Let TOR ={TOR.s/ : s∈S}. Then TOR satisfies the MRC (3.3).
(c) There is an oracle threshold

tOR.α/= sup{t : mFDR.t/�α} .3:6/

such that the oracle testing procedure

δOR ={I{TOR.s/< tOR.α/} : s∈S} .3:7/

has the smallest MDR among all α-level mFDR procedures in D.

Remark 1. Theorem 1 implies that, under the MRC (3.3), the optimal solution to a multiple-
testing problem (for mFDR-control at level α) is the solution to an equivalent weighted classifi-
cation problem with loss function (3.2) and penalty λ.α/={1− tOR.α/}=tOR.α/. The procedure
is called an ‘oracle’ procedure because it relies on knowledge of the true distributional informa-
tion and the optimal threshold tOR.α/, which are typically unknown in practice.

Remark 2. The result in theorem 1, part (c), can be used to develop an FDX controlling
procedure. First the hypotheses are ranked according to the values of TOR.s/. Since MDR
decreases in t, we choose the largest t subject to the constraint on FDX. The oracle FDX
procedure is then given by

δOR,FDX ={I{TOR.s/< tOR,FDX} : s∈S}, .3:8/

where tOR,FDX =arg maxt{FDXτ .t/�α} is the oracle FDX threshold.

3.2. Oracle procedure for clusterwise analysis
Let H1, : : : , HK be the hypotheses on the K clusters C = {C1, : : : , CK}. The true states of na-
ture (e.g. defined by partial conjunction nulls) can be represented by a binary vector ϑ =
{ϑk : k = 1, : : : , K} ∈ {0, 1}K. The decisions based on Xn = {X1, : : : , Xn} are denoted by Δ=
.Δ1, : : : , ΔK/∈{0, 1}K. The goal is to find Δ to minimize the MCR subject to FCR �α. It is
natural to consider the loss function

Lw.ϑ,Δ/=
K∑

k=1
{λwk.1−ϑk/Δk +wkϑk.1−Δk/}, .3:9/

where λ is the penalty for false positive results. As we would expect from remark 1, the FCR
control problem can be solved by connecting it to a weighted classification problem with a
suitably chosen λ. In practice λ is an unknown function of the FCR level α and needs to be
estimated. In contrast, the weights wk are prespecified. Let Tk be a clusterwise test statistic.
Define pk = P.ϑk = 1/, Gjk.t/ = P.Tk < t|ϑk = j/ and gjk.t/ = dGjk.t/=dt, j = 0, 1. Consider the
generalized monotone ratio condition (GMRC)

K∑
k=1

wkpk g1k.t/

K∑
k=1

wk.1−pk/g0k.t/

is decreasing in t: .3:10/

The GMRC guarantees that the MCR is decreasing in FCR. Let Dc be the class of decision rules
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of the form Δ={I.Tk < t/ : k =1, : : : , K}, where T= .T1, : : : , Tk/ satisfies the GMRC (3.10). We
have the following results.

Theorem 2. Let Ψ be the collection of all parameters in random field (1.1). Assume that Ψ is
known. Define the oracle test statistic

TOR.Ck/=PΨ.ϑk =0|Xn/ .3:11/

and assume that Gjk.t/ are differentiable, k =1, : : : , K, j =0, 1.

(a) The classification risk with loss (3.9) is minimized by Δ={Δk : k =1, : : : , K}, where

Δk = I{TOR.Ck/<.1+λ/−1}: .3:12/

(b) TOR ={TOR.Ck/ : k =1, : : : , K} satisfies the GMRC (3.10).
(c) Define the oracle mFCR procedure

ΔOR ={Δk
OR : k =1, : : : , K}={I{TOR.Ck/< tc

OR.α/} : k =1, : : : , K}, .3:13/

where tc
OR.α/ = sup{t : mFCR.t/ � α} is the oracle threshold. Then the oracle mFCR

procedure (3.13) has the smallest MCR among all α-level mFCR procedures in Dc.

In Section 4 we develop data-driven procedures to mimic these oracle procedures.

4. False discovery controlling procedures and computational algorithms

The oracle procedures are difficult to implement because

(a) it is impossible to make an uncountable number of decisions when S is continuous and
(b) the optimal threshold tOR and the oracle test statistics are essentially unknown in practice.

This section develops data-driven procedures for FDR-, FDX- and FCR-analyses to overcome
these difficulties. We first describe how a continuous decision process can be approximated,
within a small margin of error, by a finite number of decisions on a grid of pixels; then we
discuss how to calculate the test statistics.

4.1. FDR- and FDX-procedures for pointwise inference
To avoid making inference at every point, our strategy is to divide a continuous S into m ‘pixels’,
to pick one point in each pixel and to use the decision at that point to represent all decisions in the
pixel. We show that, as the partition becomes finer, the representation leads to an asymptotically
equivalent version of the oracle procedure.

Let ∪m
i=1 Si be a partition of S. A good partition in practice entails dividing S into roughly

homogeneous pixels, within which μ.s/ varies at most by a small constant. This condition is
stated precisely as condition 2 when we study the asymptotic validity of the method proposed.
Next take a point si from each Si. In practice it is natural to use the centre point of Si but
we shall see that the choice of si is non-essential as long as condition 2 is fulfilled. Let T

.1/
OR �

T
.2/
OR �: : :�T

.m/
OR denote the ordered oracle statistics defined by equation (3.4) and S.i/ the region

corresponding to T
.i/
OR. The following testing procedure is proposed for FDR control.

Procedure 1 (FDR-control): define Rj =∪j
i=1 S.i/ and

r =max

{
j :ν.Rj/−1

j∑
i=1

T
.i/
ORν.S.i//�α

}
: .4:1/
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The rejection area is given by R=∪r
i=1 S.i/.

Next we propose an FDX-procedure at level .γ, α/ based on the same ranking and partition
schemes. Let Rm

j ={s1, : : : , sm}∩Rj be the set of rejected representation points. The main idea
of the following procedure is first to obtain a discrete version of FDXτ based on a finite ap-
proximation, then to estimate the actual FDX-level for various cut-offs and finally to choose
the largest cut-off which controls FDX.

Procedure 2 (FDX-control): pick a small "0 > 0. Define Rj =∪j
i=1 S.i/ and

FDXm
τ , j =PΨ

[
ν.Rj/−1 ∑

si∈Rm
j

{1−θ.si/}ν.Si/> τ − "0|Xn

]
, .4:2/

where θ.si/ is a binary variable indicating the true state at location si. Let r =max{j : FDXm
τ ,j �

α}; then the rejection region is given by R=∪r
i=1 S.i/.

Now we study the theoretical properties of procedures 1 and 2. The first requirement is that
μ.s/ is a smooth process that does not degenerate at the boundaries of the indifference region
A= [Al, Au]. To see why such a requirement is needed, define

μm.s/=
m∑

i=1
μ.si/I.s∈Si/,

θ.s/= I{μ.s/∈Ac},

θm.s/= I{μm.s/∈Ac}:

For a particular realization of μ.s/, μm.s/ is a simple function which takes a finite number of
values according to the partition S = ∪i Si and converges to μ.s/ pointwise as the partition
becomes finer. At locations close to the boundaries, a small difference between μm.s/ and μ.s/

can lead to different θ.s/ and θm.s/. The following condition, which states that μ.s/ does not
degenerate at the boundaries, guarantees that θ.s/ �=θm.s/ only occurs with a small chance when
|μm.s/−μ.s/| is small. The condition holds when μ.s/ is a continuous random variable.

Condition 1. Let A= [Al, Au] be the indifference region and " a small positive constant. Then∫
S P{AÅ − "<μ.s/<AÅ + "}dν.s/→0 as "→0, for AÅ =Al or AÅ =Au.

To achieve asymptotic validity, the partition S = ∪i Si should yield roughly homogeneous
pixels so that the decision at point si is a good representation of the decision process on pixel Si.
Consider the event that the variation of μ.s/ on a pixel exceeds a small constant. The next condi-
tion guarantees that the event occurs with only a vanishingly small chance. The condition holds
for the Gaussian and Matérn models that are used in our simulation study and real data analysis.

Condition 2. There is a sequence of partitions {S =∪m
i=1 Si : m = 1, 2, : : :} such that, for any

given "> 0, limm→∞
∫

S P{|μ.s/−μm.s/|� "}dν.s/=0.

Conditions 1 and 2 together guarantee that θ.s/ = θm.s/ would occur with overwhelming
probability when the partition becomes finer. See lemma 2 in Appendix A.

The next theorem shows that procedures 1 and 2 are asymptotically valid for FDR- and
FDX-control respectively. We first state the main result for a continuous S.

Theorem 3. Consider TOR.s/ and FDXm
τ ,j defined in equations (3.4) and (4.2) respectively.

Let {∪m
i=1 Si :m=1, 2, : : :} be a sequence of partitions of S satisfying conditions 1 and 2. Then
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(a) the FDR-level of procedure 1 satisfies FDR�α+o.1/ when m→∞ and
(b) the FDX-level of procedure 2 satisfies FDXτ �α+o.1/ when m→∞.

When S is discrete, the FDR- or FDX-control is exact; this (stronger) result follows directly
from the proof of theorem 3.

Corollary 1. When S is discrete, a natural partition is S =∪m
i=1 {si}. Then

(a) the FDR-level of procedure 1 satisfies FDR�α;
(b) the FDX-level of procedure 2 satisfies FDXτ �α.

4.2. FCR-procedure for clusterwise inference
Now we turn to the clusterwise analysis. Let C1, : : : , CK be the clusters and H1, : : : , HK the
corresponding hypotheses. We have shown that TOR.Ck/=PΨ.ϑk =0|Xn/ is the optimal statistic
for clusterwise inference.

Procedure 3 (FCR-control): let T c
.1/ �: : :�T c

.K/ be the ordered TOR.Ck/ values, and H.1/, : : : ,
H.K/ and w.1/, : : : , w.K/ the corresponding hypotheses and weights respectively. Let

r =max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j :

j∑
k=1

w.k/T
c
.k/

j∑
k=1

w.k/

�α

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

:

Then reject H.1/, : : : , H.r/.

The next theorem shows that procedure 3 is valid for FCR-control.

Theorem 4. Consider TOR.Ck/ defined in equation (3.11). Then the FCR of procedure 3 is
controlled at the level α.

It is not straightforward to implement procedures 1–3 because TOR.si/, FDXm
τ ,j and TOR.Ck/

are unknown in practice. The next section develops computational algorithms to estimate these
quantities on the basis of Bayesian spatial models.

4.3. Data-driven procedures and computational algorithms
An important special case of model (1.1) is the Gaussian random field, where the signals and
errors are generated as Gaussian processes with means μ̄ and 0, and covariance matrices Σ1 and
Σ2 respectively. Let Ψ be the collection of all hyperparameters in random field (1.1).

Consider a general random-field model (1.1) defined on S. Let Ψ̂ be the estimate of Ψ.
Denote by Xn = .X1, : : : , Xn/ the collection of random variables that are associated with loca-
tions sÅ1 , : : : , sÅn . Further let f.μ|Xn, Ψ̂/∝π.μ/f.Xn|μ, Ψ̂/ be the posterior density function of
μ given Xn and Ψ̂. The numerical methods for model fitting and parameter estimation in spatial
models have been extensively studied (see Gelfand et al. (2010) and the references therein). We
provide in the Web appendix the technical details in a Gaussian random-field model, which is
used in both the simulation study and the real data example. The focus of discussion is on how
the MCMC samples, generated from the posterior distribution, can be used to carry out the
proposed multiple-testing procedures.

We start with a pointwise testing problem with H0.s/ :μ.s/∈A versus H1.s/ :μ.s/ �∈A, s∈S. Let
Sm = .s1, : : : , sm/ denote the collection of the representative points based on partition S =∪m

i=1 Si.
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We discuss only the result for a continuous S (the result extends to a discrete S by simply taking
Sm =S). Suppose that the MCMC samples are {μ̂m

b :b=1, : : : , B}, where μ̂m
b = .μ̂m,1

b , : : : , μ̂m,m
b /

is an m-dimensional posterior sample indicating the magnitudes of the signals at locations
s1, : : : , sm in replication b. Let θ̂

m,i
b = I.μ̂m,i

b �∈ A/ denote the estimated state of location si in
replication b. To implement procedure 1 for FDR-analysis, we need to compute

TOR.si/=PΨ{θ.si/=0|Xn}=
∫

I{μ.si/∈A}fμ|Xn.μ|Xn, Ψ/dμ:

It is easy to see that TOR.si/ can be estimated by

T̂ OR.si/= 1
B

B∑
b=1

I.μ̂m,i
b ∈A/= 1

B

B∑
b=1

.1− θ̂
m,i
b /: .4:3/

To implement procedure 2, note that the FDX defined in equation (4.2) can be written as

FDXm
τ ,j =

∫
I

[
ν.Rj/−1 ∑

si∈Rm
j

{1−θ.si/}ν.Si/> τ − "0

]
fμ|Xn.μ|Xn, Ψ/dμ,

where j is the number of points in sm which are rejected, Rj =∪j
i=1 S.i/ is the rejection region

and Rm
j = Sm ∩ Rj is a subset of points in Sm which are rejected. Given the MCMC samples

{μ̂m
b : b=1, : : : , B}, FDXm

τ ,j can be estimated as

̂FDX
m

τ ,j = 1
B

B∑
i=1

I

{
ν.Rj/−1 ∑

si∈Rm
j

.1− θ̂
m, i

b /ν.Si/> τ − "0

}
: .4:4/

Therefore procedures 1 and 2 can be implemented by replacing TOR.si/ and FDXm
τ ,j by their

estimates given in equations (4.3) and (4.4).
Next we turn to clusterwise testing problems. Let ∪mk

i=1 Sk
i be a partition of Ck. Take a point

sk
i from each Sk

i . Let smk = .smk ,1, : : : , smk ,mk / be the collection of sampled points in cluster Ck,
m=ΣK

k=1 mk be the count of points sampled in S and sm = .sm1 , : : : , smK /. If we are interested in
testing partial conjunction of nulls H0.Ck/ :πk �γ versus H1.Ck/ :πk >γ, where πk =ν.{s∈Ck :
θ.s/=1}/=ν.Ck/, then we can define ϑm

k = I{Σmk

i=1θ.sk
i /ν.Sk

i />γ ν.Ck/} as an approximation to
ϑk = I.πk >γ/. If the goal is to test average activation amplitude, i.e. H0.Ck/ : μ̄.Ck/� μ̄0 versus
H1.Ck/ : μ̄.Ck/ > μ̄0, then we can define ϑm

k = I{Σmk

i=1μ.sk
i /ν.Sk

i / > μ̄0 ν.Ck/}. Let T m
OR.Ck/ =

P.ϑm
k =0|Xn/.

To implement procedure 3, we need to compute T m
OR.Ck/. Suppose that we are interested in

testing partial conjunction of nulls; then

T m
OR.Ck/=

∫
I

{
mk∑
i=1

θ.sk
i /ν.Sk

i /<γ ν.Ck/

}
fμ|Xn.μ|Xn/dμ:

Denote by μ̂
mk
b = .μ̂

mk ,1
b , : : : , μ̂mk ,mk

b / the MCMC samples for cluster Ck at points smk in replica-
tion b, b=1, : : : , B. Further let θ̂

mk ,i
b = I.μ̂

mk ,i
b �∈A/. Then

∫
Ck

θ.s/ds in a particular replication b

can be approximated by mk
−1 Σmk

i=1θ̂
mk , i

b ν.Sk
i / and the oracle statistic T m

OR.Ck/ can be estimated
by

T̂ OR.Ck/= 1
B

B∑
b=1

I

{
1

mk

mk∑
i=1

θ̂
mk , i

b ν.Sk
i /<γ ν.Ck/

}
:

If the goal is to test average activation amplitude, T m
OR.Ck/ can be estimated as
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T̂ OR.Ck/= 1
B

B∑
b=1

I

{
ν.Ck/−1

mk∑
i=1

μ̂
mk , i
b ν.Sk

i /< μ̄0

}
:

5. Simulation

We conduct simulation studies to investigate the numerical properties of the methods proposed.
A significant advantage of our method over conventional methods is that the procedure can
carry out analysis on a continuous spatial domain. However, to permit comparisons with other
methods, we first limit the analysis to a Gaussian model for testing hypotheses at the n locations
where the data points are observed. Therefore we have m = n. Then we conduct simulations
to investigate, without comparison, the performance of our methods for a Matérn model to
test hypotheses on a continuous domain based on a discrete set of data points. The R code for
implementing our procedures is available from http://www-bcf.usc.edu/∼wenguang/
Spatial-FDR-Software.

5.1. Gaussian model with observed data at all testing units
We generate data according to model (1.1) with both the signals and the errors being Gaussian
processes. Let ‖·‖ denote the Euclidean distance. The signal process μ has mean μ̄ and powered
exponential covariance cov{μ.s/, μ.s′/}=σ2

μ exp{−.‖s− s′‖=ρμ/k}, whereas the error process "

has mean 0 and covariance cov{".s/, ".s′/}= .1− r/I.s= s′/+ r exp{−.‖s− s′‖=ρ"/
k} so r∈ [0, 1]

controls the proportion of the error variance with spatial correlation. For each simulated data
set, the process is observed at n data locations generated as s1, : : : , sn ∼IID uniform([0, 1]2).
For all simulations, we choose n = 1000, r = 0:9, μ̄ = −1 and σμ = 2; under this setting the
expected proportion of positive observations is 33%. We generate data with k =1 (exponential
correlation) and k = 2 (Gaussian correlation), and for several values of the spatial ranges ρμ

and ρ". We present the results for only k = 1. The conclusions from simulations for k = 2 are
similar in the sense that our methods control FDR more precisely and are more powerful than
competitive methods. For each combination of spatial covariance parameters, we generate 200
data sets. For simulations studying the effects of varying ρμ we fix ρ" = 0.05, and for simulations
studying the effects of varying ρ" we fix ρμ = 0.05.

5.1.1. Pointwise analysis
For each of the n locations, we test the hypotheses H0.s/ : μ.s/ � 0 versus H1.s/ : μ.s/ > 0. We
implement procedure 1 (assuming that the parameters are known, which is denoted by oracle
FDR) and the proposed method (4.3) using MCMC samples (denoted by MC FDR), and we
compare our methods with three popular approaches: the step-up p-value procedure (Benjamini
and Hochberg, 1995), the adaptive p-value procedure AP (Benjamini and Hochberg, 2000;
Genovese and Wasserman, 2002) and the FDR-procedure that was proposed by Pacifico et al.
(2004), which is denoted by PGVW FDR. We then implement procedure 2 (assuming that the
parameters are known, which is denoted by oracle FDX) and its MCMC version (MC FDX)
based on expression (4.4), and compare the methods with the procedure that was proposed by
Pacifico et al. (2004) (which is denoted by PGVW FDX).

We generate the MCMC samples by using a Bayes model, where we assume that k is known,
and we select uninformative priors: μ̄ ∼ N.0, 1002/, σ−2

μ ∼ gamma.0:1, 0:1/ and r, ρμ, ρ" ∼
uniform.0, 1/. The oracle FDR or oracle FDX procedure fixes these five hyperparameters at
their true values to determine the effect of their uncertainty on the results. For each method and
each data set we take α= τ =0:1. Fig. 2 plots the averages of the FDPs and MDPs over the 200
data sets.
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Fig. 2. Summary of the sitewise simulation study with exponential correlation: (a) FDR by spatial range of
the signal (�, Benjamini–Hochberg; , Genovese–Wasserman; , oracle FDR; , oracle FDX; , MC FDR;

, MC FDX; , PGVW FDR; , PGVW FDX); (b) FDR by spatial range of the error; (c) distribution of FDP by
spatial range of the signal ( , oracle FDR; , oracle FDX; , MC FDR; , MC FDX; —, 0.10-, 0.25-, 0.50-, 0.75-
and 0.90-quantiles of FDP); (d) distribution of FDP by spatial range of the error; (e) MDR by spatial range of
the signal (�, Benjamini–Hochberg; , Genovese–Wasserman; , oracle FDR; , oracle FDX; , MC FDR;

, MC FDX; , PGVW FDR; , PGVW FDX); (f) MDR by spatial range of the error
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We can see that the oracle FDR procedure controls FDR nearly perfectly. The MC FDR
procedure, with uninformative priors on the unknown spatial correlation parameters, also has
good FDR control, between 10% and 12%. As expected, the oracle and MC FDX methods
that are tuned to control FDX are more conservative than the FDR-methods, with observed
FDR between 5% and 8%. The FDX-methods become increasingly conservative as the spatial
correlation of the signal increases to adjust appropriately for higher correlation between tests.
In contrast, the Benjamini–Hochberg, Genovese–Wasserman and PGVW procedures are very
conservative, with much higher MDR-levels. The distribution of FDP is shown in Figs 2(c) and
2(d). In some cases, the upper tail of the FDP-distribution approaches 0.2 for the MC FDR
procedure. In contrast, the oracle FDX method has FDP under 0.1 with very high probability
for all correlation models. The MC FDX procedure also effectively controls FDX in most cases.
The 95th percentile of FDP is 0.15 for the smallest spatial range in Fig. 2(c), and less than 0.12
in all other cases.

5.1.2. Clusterwise analysis
We use the same data-generating schemes and MCMC sampling methods as in the sitewise
simulation in the previous section. The whole spatial domain is partitioned into a regular 7×7
grid, giving 49 clusters. We consider partial conjunction tests, where a cluster is rejected if more
than 20% of the locations in the cluster contain true positive signal (μ.s/ > 0). We implement
procedure 3 (assuming that the parameters are known, which is denoted by oracle FCR) and the
corresponding MCMC method with non-informative priors (which is denoted by MC FCR).
We compare our methods with the combined p-value approach that was proposed by Benjamini
and Heller (2007). To make the methods comparable, we restrict the analysis to the n = 1000
data locations. We assume α= 0:1 and an exponential correlation with k = 1. The simulation
results are summarized in Fig. 3. We can see that the oracle FCR procedure controls FCR nearly
perfectly. The MC FCR procedure has FCR slightly above the nominal level (less than 0.13 in
all settings). In contrast the combined p-value method is very conservative, with FCR less than
0.02. Both the oracle FCR and the MC FCR procedures have much lower missed cluster rates
(MCR, the proportion of missed clusters which contain true signal in more than 20% of the
locations).

5.2. Matérn model with missing data on the testing units
We use the model z.s/ = μ.s/ + ".s/ but generate the signals μ.s/ and errors ".s/ as Gaus-
sian processes with Matérn covariance functions. The signal process {μ.s/ : s ∈ S} has mean
μ̄ and covariance cov{μ.s/, μ.t/} = σ2

μ M.‖s − t‖;ρμ, κμ/, where the Matérn correlation func-
tion M is determined by the spatial range parameter ρμ > 0 and smoothness parameter κμ.
The error process {".s/ : s ∈ S} has mean 0 and covariance cov{".s/, ".t/} = .1 − r/I.s = t/ +
r M.‖s − t‖;ρ", κ"/ so r ∈ [0, 1] controls the proportion of the error variance with spatial cor-
relation.

For each simulated data set, data are generated at n spatial locations si ∼IID uniform.D/,
where D is the unit square D = [0, 1]2. Predictions are made and tests of H0 : μ.s/ �μ0 versus
H1 : μ.s/ > μ0 are conducted at the m2 locations forming the m × m square grid covering D.
For all simulations, we choose n= 200, m= 25, r = 0:9, μ̄= 0, μ0 = 6:41 and σμ = 5; under this
setting the expected proportion of locations with μ.s/ > μ0 is 0.1. We generate data with two
correlation functions: the first is exponential correlation with κμ =κ" = 0:5 and ρμ =ρ" = 0:2;
the second has κμ =κ" =2:5 and ρμ =ρ" =0:1, which give a smoother spatial process than the
exponential function but with roughly the same effective range (the distance at which correlation
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Fig. 4. Simulation results for FDP and MDP with nD200 with data generated with (a), (b) exponential and
(c), (d) Matérn spatial correlation (—, 0.10-, 0.25-, 0.50-, 0.75- and 0.90-quantiles of FDP and MDP; the
numbers above the boxplots are the means of FDP or FDR and MDP or MDR): (a), (c) pointwise analysis;
(b), (d) cluster analysis

is 0.05). For both correlation functions we generate 200 data sets and fit the model with Matérn
correlation function and priors μ̄∼N.0, 10002/, σ−2

μ ∼gamma.0:01, 0:01/, r∼uniform.0, 1/ and
κμ, κ", ρμ, ρ" ∼IID N.−1, 1/. For comparison we also fit the oracle model with hyperparameters
μ̄, σμ, r, κμ, κ", ρμ and ρ" fixed at their true values.

The results are summarized in Fig. 4. For data simulated with exponential correlation,
both the data-driven procedure and the oracle procedure with FDR-thresholding maintain
proper FDR (0.09 for the data-driven procedure and 0.07 for the oracle procedure). The 0.9-
quantile of FDP for the data-driven procedure with FDR-control is over 0.20. In contrast, the
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0.9-quantile for the data-driven procedure with FDX-threshold is slightly below 0.1, indicating
proper FDX-control. The results for the Matérn data are similar, except that all models have
lower missed discovery rate because with a smoother spatial surface the predictions are more
precise.

We also evaluate the cluster FDR and FDX performance by using this simulation design.
Data were generated and the models were fitted as for the pointwise simulation. We define the
spatial cluster regions by first creating a 10×10 regular partition of D, and then combining the
final two columns and final two rows to give unequal cluster sizes. This gives 81 clusters and
between four and 25 prediction locations per spatial cluster. We define a cluster as non-null
if μ.s/ > μ0 for at least 20% of its locations. FDR and FDX are controlled in all cases, and
the power is much higher for the smoother Matérn data. FDR and FDX for the data-driven
procedures are comparable with the oracle procedure with these parameters fixed at their true
values, suggesting that the proposed testing procedure is efficient even in this difficult setting.

6. Ozone data analysis

To illustrate the method proposed, we analyse daily surface level 8-h average ozone levels for
the eastern USA. The data are obtained from the US Environmental Protection Agency’s air
explorer database (http://www.epa.gov/airexplorer/index.htm). Ozone regulation
is based on the fourth highest daily value of the year. Therefore, for each of the 631 stations and
each year from 1997 to 2005, we compute the fourth highest daily value of 8-h average ozone
level. Our objective is to identify locations with a decreasing time trend in this yearly value.

The precision of our testing procedure shows some sensitivity to model misspecification; hence
we must be careful to conduct exploratory analysis to ensure that the spatial model fits the data
reasonably well. See the Web appendix for a more detailed discussion. After some exploratory
analysis, we fit the model β̂.s/ =β.s/ + w.s/".s/, where β̂.s/ and w.s/ are the estimated slope
and its standard error respectively from the first-stage simple linear regression analysis with
predictor year, conducted separately at each site. After projecting the spatial co-ordinates to
the unit square by using a Mercator projection, the model for β and " and the priors for all
hyperparameters are the same as those in the simulation study in Section 5. The estimated slopes
and corresponding z-values are plotted in Fig. 1. We can see that the estimated slope is generally
negative, implying that ozone concentrations are declining through the vast majority of the
spatial domain. Thus we choose to test whether the decline in ozone level is more than 1 ppb
per decade, i.e. H0 :β.s/�−0:1 versus H1 :β.s/<−0:1.

We choose k = 1 (exponential correlation) and generate MCMC samples based on the pos-
terior distribution of β on a rectangular 100 × 100 grid of points covering the spatial domain
(including areas outside the USA), and we test the hypotheses at each grid cell in the USA.
Comparing Figs 5(a) and 1(a), we see considerable smoothing of the estimated slopes. The pos-
terior mean is negative throughout most of the domain, but there are areas with a positive slope,
including western Pennsylvania and Chesapeake Bay. The estimated decrease is the largest in
Wisconsin, Illinois, Georgia and Florida. The estimates of 1− T̂ OR.si/ are plotted in Fig. 5(b).
The estimated FDR- (α = 0:1) and FDX- (α = τ = 0:1) thresholds for T̂ OR are 0.30 and 0.16
respectively. Figs 5(c) and 5(d) show that the null hypothesis is rejected by using both threshold-
ing rules for the western part of the domain, Georgia and Florida, and much of New England.
As expected, the FDX-threshold is more conservative; the null hypothesis is rejected for much
of North Carolina and Virginia by using FDR, but not FDX.

We also conduct a clusterwise analysis using states as clusters. Although these clusters are
fairly large, spatial correlation persists after clustering. For example, denote β̄j as the average of
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Table 1. Cluster analysis for the ozone data†

State Number Number State Probability Proportion Posterior
of of grid average state non-null probability

monitors points trend average active
<−0.1

Alabama 25 234 −0.19 0.78 0.65 0.25
Connecticut 9 28 −0.38 0.97 0.92 0.86‡
Delaware 6 8 −0.36 0.95 0.91 0.81‡
Florida 43 235 −0.53 1.00 0.93 0.93‡
Georgia 23 271 −0.54 1.00 0.96 0.97‡
Illinois 35 277 −0.66 1.00 0.98 0.99‡
Indiana 41 185 −0.32 0.98 0.84 0.68
Kentucky 32 195 −0.25 0.91 0.75 0.45
Maine 8 159 −0.51 0.99 0.94 0.90‡
Maryland 19 55 −0.30 0.96 0.83 0.64
Massachusetts 14 36 −0.26 0.91 0.76 0.51
Michigan 26 296 −0.50 1.00 0.92 0.92‡
Mississippi 8 220 −0.27 0.87 0.76 0.52
New Hampshire 13 46 −0.23 0.85 0.73 0.46
New Jersey 13 39 −0.27 0.92 0.81 0.59
New York 33 262 −0.15 0.65 0.59 0.18
North Carolina 41 227 −0.23 0.88 0.71 0.33
Ohio 48 202 −0.16 0.77 0.62 0.15
Pennsylvania 46 219 −0.23 0.90 0.70 0.20
Rhode Island 3 8 −0.47 0.99 0.98 0.96‡
South Carolina 20 144 −0.42 0.98 0.89 0.81‡
Tennessee 25 185 −0.25 0.89 0.73 0.41
Vermont 2 55 −0.18 0.69 0.63 0.34
Virginia 23 188 −0.25 0.88 0.73 0.40
West Virginia 9 115 −0.24 0.83 0.72 0.45
Wisconsin 31 292 −0.64 0.98 0.92 0.86‡

†‘State average trend’ is the posterior mean of the average of the β.s/ at the grid cells in the state.
‡Significant at α=0:1.

β.s/ at the grid locations that were described above for state j. The posterior correlation between
β̄j for Florida and other states is 0.51 for Georgia, 0.36 for Alabama and 0.33 for North Carolina.
Table 1 summarizes the clusterwise analysis. We define the state to have a significant change in
ozone level if at least 80% of the state has slope less than −0:1 ppb. Using this criterion gives
T̂ OR.Ck/ a threshold of 0.27 for an FCR-analysis at level α=0:1, and 10 of the 26 states have a
statistically significant trend in ozone level. An alternative way to perform clusterwise analysis
is to define a cluster as active if its mean β̄j <−0:1. Table 1 gives the posterior probabilities that
β̄j <−0:1 for each state. All 26 states have a statistically significant trend in ozone concentration
by using an FCR-analysis at level 0.1.
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Appendix A: Proofs

Here we prove theorems 1 and 3. The proofs of theorems 2 and 4 and the lemmas are provided in the Web
appendix.

A.1. Proof of theorem 1
We first state a lemma, which is proved in the Web appendix.

Lemma 1. Consider a decision rule δ = [I{T.s/ < t} : s∈S]. If T ={T.s/ : s∈S} satisfies the MRC (3.3),
then the mFDR-level of δ monotonically increases in t.

(a) Let θ={θ.s/ : s∈S} and δ = .δ.s/ : s∈S/ denote the unknown states and decisions respectively. The
loss function (3.2) can be written as

L.θ, δ/=λν.SFP/+ν.SFN/=
∫

S

λ{1−θ.s/}δ.s/dν.s/+
∫

S

θ.s/{1− δ.s/}dν.s/:

The posterior classification risk is

Eθ|Xn{L.θ, δ/}=
∫

S

[δ.s/λP{θ.s/=0|Xn}+{1− δ.s/}P{θ.s/=1|Xn}]dν.s/

=
∫

S

δ.s/[λP{θ.s/=0|Xn}−P{θ.s/=1|Xn}]dν.s/+
∫

S

P{θ.s/=1|Xn}dν.s/:

Therefore, the optimal decision rule which minimizes the posterior classification risk (and also the
classification risk) is given by δOR ={δOR.s/ : s∈S}, where

δOR.s/= I[λP{θ.s/=0|Xn}−P{θ.s/=1|Xn}< 0]= I{TOR.s/<.1+λ/−1}:

(b) We have assumed that G0.t/ = ∫
S

P{θ.s/ = 0, TOR.s/ < t}dν.s/ and G1.t/ = ∫
S

P{θ.s/ = 1, TOR.s/ <
t}dν.s/ are differentiable. Let g1.t/ and g0.t/ be the derivatives. The goal is to show that g1.t/=g0.t/
decreases in t for t ∈ .0, 1/. Consider a weighted classification problem with loss function

L.θ, δ/= 1− t

t
ν.SFP/+ν.SFN/:

Suppose that TOR ={TOR.s/ : s∈S} is used in the weighted classification problem and the threshold
is c. By Fubini’s theorem the classification risk is

E

{
1− t

t
ν.SFP/+ν.SFN/

}
= 1− t

t

∫
S

P{θ.s/=0, TOR.s/<c}dν.s/+
∫

S

P{θ.s/=1, TOR.s/>c}dν.s/

= 1− t

t
G0.c/+

∫
S

P{θ.s/=1}dν.s/−G1.c/:

The threshold c = tÅ which minimizes the classification risk satisfies t−1.1 − t/g0.t
Å/ = g1.t

Å/. By
part (a), the optimal threshold tÅ ={1+ t−1.1− t/}−1 = t. Therefore we have

g1.t/

g0.t/
= 1− t

t
, for all 0 <t< 1,

and the result follows.
(c) Let T be a test statistic that satisfies the MRC (3.3). Lemma 1 indicates that, for a given α∈ .0, αÅ/

(αÅ is the largest mFDR-level when the threshold t = 1), there is a threshold t.α/ such that the
mFDR-level of δ = [I{T.s/< t.α/} : s∈S] is α, which completes the first part of the proof.
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Let ERA{T, t.α/}, ETPA{T, t.α/} and EFPA{T, t.α/} be the expected rejection area, expected
true positive area and expected false positive area of the decision rule δ = [I{T.s/ < t.α/} : s ∈ S]
respectively. Then we have

ERA{T, t.α/}=E

[∫
S

I{T.s/< t.α/}dν.s/

]
=

∫
S

P{T.s/< t.α/}dν.s/:

By definition, ERA{T, t.α/}= ETPA{T, t.α/}+ EFPA{T, t.α/}. Also note that the mFDR-level
is exactly α. We conclude that ETPA{T, t.α/}=α

∫
S

P{T.s/ < t.α/}dν.s/, and EFPA{T, t.α/}=
.1−α/

∫
S

P{T.s/< t.α/}dν.s/.
Now consider the oracle test statistic TOR defined in expressions (3.5). Part (b) of theorem 1

shows that TOR satisfies the MRC (3.3). Hence, from the first part of the proof of part (c), there is
a tOR.α/ such that δOR = [I{TOR.s/ < tOR.α/} : s∈S] controls mFDR at level α exactly. Consider a
weighted classification problem with the loss function

L.θ, δ/= 1− tOR.α/

tOR.α/
ν.SFP/+ν.SFN/: .A:1/

Part (a) shows that the optimal solution to the weighted classification problem is δOR = [I{TOR.s/<
tOR.α/} : s∈S]. The classification risk of δOR is

E{L.θ, δOR/}= 1− tOR.α/

tOR.α/
E

[∫
S

{1−θ.s/}δOR.s/dν.s/

]
+E

[∫
S

θ.s/{1− δOR.s/}dν.s/

]

= 1− tOR.α/

tOR.α/
EFPA{TOR, tOR.α/}+

∫
S

P{θ.s/=1}dν.s/−ETPA{TOR, tOR.α/}

= α− tOR.α/

tOR.α/
ERA{TOR, tOR.α/}+

∫
S

P{θ.s/=1}dν.s/:

The last equation is due to the facts that ETPA{T, t.α/}=α
∫

S
P{T.s/<t.α/}dν.s/, EFPA{T, t.α/}

= .1−α/
∫

S
P{T.s/< t.α/}dν.s/ and ETPA{T, t.α/}=αERA{T, t.α/}.

According to a Markov-type inequality, double-expectation theorem, and the fact that
ETPA{T, t.α/}=αERA{T, t.α/}, we conclude that

tOR.α/

∫
S

E[I{TOR.s/< tOR.α/}]dν.s/>

∫
S

E[I{TOR.s/< tOR.α/}TOR.s/]dν.s/

=
∫

S

E[TOR.s/< tOR, θ.s/=0]dν.s/

=α

∫
S

E[I{TOR.s/< tOR.α/}]dν.s/:

Hence we always have tOR.α/−α> 0.
Next we claim that, for any decision rules δ = [I{T.s/ < t.α/} : s ∈ S] in D, the following result

holds: ERA{T, t.α/}�ERA{TOR, tOR.α/}: We argue by contradiction. If there is a δÅ = [I{T Å.s/<
tÅ.α/} : s∈S] such that

ERA{TÅ, tÅ.α/}> ERA{TOR, tOR.α/}: .A:2/

Then, when δÅ is used in the weighted classification problem with loss function (A.1), the classifi-
cation risk of δÅ is

E{L.θ, δÅ/}= α− tOR.α/

tOR.α/
ERA{TÅ, tÅ.α/}+

∫
S

P{θ.s/=1}dν.s/

<
α− tOR.α/

tOR.α/
ERA{TOR, tOR.α/}+

∫
S

P{θ.s/=1}dν.s/

=E{L.θ, δOR/}:

The first equation holds because δ{TÅ, tÅ.α/} is also an α-level mFDR-procedure. This contradicts
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the result in theorem 1, which claims that δOR minimizes the classification risk with loss function
(A.1).

Therefore we claim that δOR has the largest ERA, and hence the largest ETPA (note that we always
have ETPA=αERA) and the smallest missed discovery region MDR among all mFDR-procedures
at level α in D.

A.2. Proof of theorem 3
We first state and prove a lemma. Define θ.s/= I{μ.s/∈Ac} and θm.s/= I{μm.s/∈Ac}, where A= [Al, Au]
is the indifference region.

Lemma 2. Consider the discrete approximation based on a sequence of partitions of the spatial domain
{S =∪m

i=1 Si :m=1, 2, : : :}. Then, under the conditions of theorem 3, we have
∫

S
P{θ.s/ �=θm.s/}dν.s/→0

as m→∞.

The proof of theorem 3 is in two parts.

(a) Suppose that TOR.s/ = PΨ{θ.s/ = 0|Xn} is used for testing. Then procedure 1 corresponds to the
decision rule δm ={δm.s/ : s∈S}, where δm.s/=Σm

i=1I{TOR.si/< t}I.s∈Si/. We assume that r pixels
are rejected and let Rr be the rejected area. The FDR-level of δm is

FDR�E

[∫
S{1−θ.s/}

δm.s/dν.s/

ν.Rr/∨ c0

]

=E

(
1

ν.Rr/∨ c0

[
m∑

i=1
δ.si/

∫
Si

E{1−θ.s/|Xn}dν.s/

])

=E

(
1

ν.Rr/∨ c0

[
m∑

i=1
δ.si/TOR.si/ν.Si/+

m∑
i=1

δ.si/

∫
Si

E{θ.si/−θ.s/|Xn}dν.s/

])

�E

{
1

ν.Rr/∨ c0

r∑
i=1

T
.i/
OR ν.S.i//

}
+Zm,

where Zm =E[{ν.Rr/∨ c0}−1
∫

S
E{θ.s/−θm.s/|Xn}δm.s/dν.s/]. The second equality follows from

the double-expectation theorem. The third equality can be verified by first adding and subtracting
θ.si/, expanding the sum, and then simplifying.

Next note that an upper bound for the random quantity {ν.Rr/∨c0}−1 is given by c−1
0 . Applying

lemma 2,

Zm � 1
c0

∫
S

E[δm.s/E{θ.s/−θm.s/|Xn}]dν.s/

� 1
c0

∫
S

P{θ.s/ �=θm.s/}dν.s/→0:

Since the operation of procedure δm guarantees that
1

ν.Rr/∨ c0

r∑
i=1

T
.i/
OR ν.S.i//�α

for all realizations of Xn, FDR is controlled at level α asymptotically.
(b) Suppose that r pixels are rejected by procedure 2. Consider δm.s/ defined in part (a). Then FDX at

tolerance level τ is

FDXτ �P

[
{ν.Rr/∨ c0}−1

∫
S

δm.s/{1−θ.s/}dν.s/> τ

]

=P

[
{ν.Rr/∨ c0}−1

m∑
i=1

δ.si/

∫
Si

{1−θ.s/}dν.s/> τ

]

=P

[
{ν.Rr/∨ c0}−1

m∑
i=1

δ.si/{1−θ.si/}ν.Si/+{ν.Rr/∨ c0}−1
∫

S

δm.s/{θm.s/−θ.s/}dν.s/> τ

]
≡P.A+B> τ /,
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where A and B are the corresponding terms on the left-hand side of the inequality. Let "0 ∈ .0, τ / be
the small positive number defined in procedure 2. Then A+B> τ implies that A> τ −"0 or B>"0.
It follows that

P.A+B> τ /�P.A> τ − "0 or B>"0/�P.A> τ − "0/+P.B>"0/:

Let I denote an indicator function. Applying the double-expectation theorem to the first term
P.A> τ − "0/, we have

P.A> τ − "0/=E[I{A> τ − "0}]=E{P.A> τ − "0|Xn/}:

Replacing A and B by their original expressions, we have

FDXτ �E

(
P

[
{ν.Rr/∨ c0}−1

m∑
i=1

δ.si/{1−θ.si/}ν.Si/> τ − "0

∣∣∣∣Xn

])

+P

[
{ν.Rr/∨ c0}−1

∫
S

δm.s/{θm.s/−θ.s/}dν.s/� "0

]
:

It is easy to see that

FDXm
τ ,r �P

[
{ν.Rr/∨ c0}−1

m∑
i=1

δ.si/{1−θ.si/}ν.Si/> τ − "0

∣∣∣∣Xn

]
:

The operation property of procedure 2 guarantees that FDXm
τ ,r �α for all realizations of Xn. There-

fore the first term in the expression of FDXτ is less than α. The second term in the upper bound of
FDXτ satisfies

P

[
{ν.Rr/∨ c0}−1

∫
S

δm.s/{θm.s/−θ.s/}dν.s/� "0

]
� ."0c0/

−1 E

[∫
S

δm.s/ |θm.s/−θ.s/| dν.s/

]

� ."0c0/
−1

∫
S

P{θ.s/ �=θm.s/}dν.s/→0

and the desired result follows.

References

Benjamini, Y. and Heller, R. (2007) False discovery rates for spatial signals. J. Am. Statist. Ass., 102, 1272–1281.
Benjamini, Y. and Heller, R. (2008) Screening for partial conjunction hypotheses. Biometrics, 64, 1215–1222.
Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to

multiple testing. J. R. Statist. Soc. B, 57, 289–300.
Benjamini, Y. and Hochberg, Y. (1997) Multiple hypotheses testing with weights. Scand. J. Statist., 24, 407–418.
Benjamini, Y. and Hochberg, Y. (2000) On the adaptive control of the false discovery rate in multiple testing with

independent statistics. J. Educ. Behav. Statist., 25, 60–83.
Benjamini, Y. and Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency.

Ann. Statist., 29, 1165–1188.
Bogdan, M., Gosh, J. and Tokdar, S. (2008) A comparison of the Benjamini-Hochberg procedure with some

Bayesian rules for multiple testing. In Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of
Professor Pranab K. Sen (eds N. Balakrishnan, E. Peña and M. Silvapulle), pp. 211–230. Beachwood: Institute
of Mathematical Statistics.

Caldas de Castro, M. and Singer, B. (2006) Controlling the false discovery rate: a new application to account for
multiple and dependent tests in local statistics of spatial association. Geog. Anal., 38, 180–208.

Chen, M., Cho, J., and Zhao, H. (2011) Incorporating biological pathways via a markov random field model in
genome-wide association studies. PLOS Genet., 7, article e1001353.

Clarke, S. and Hall, P. (2009) Robustness of multiple testing procedures against dependence. Ann. Statist., 37,
332–358.

Efron, B. (2007) Correlation and large-scale simultaneous significance testing. J. Am. Statist. Ass., 102, 93–103.
Finner, H., Dickhaus, T. and Roters, M. (2007) Dependency and false discovery rate: asymptotics. Ann. Statist.,

35, 1432–1455.
Finner, H. and Roters, M. (2002) Multiple hypotheses testing and expected number of type i errors. Ann. Statist.,

30, 220–238.
Gelfand, A. E., Diggle, P. J., Fuentes, M. and Guttorp, P. (2010) Handbook of Spatial Statistics. New York:

Chapman and Hall–CRC.



Spatial Multiple Testing 83

Genovese, C. R., Lazar, N. A. and Nichols, T. (2002) Thresholding of statistical maps in functional neuroimaging
using the false discovery rate. Neuroimage, 15, 870–878.

Genovese, C. and Wasserman, L. (2002) Operating characteristics and extensions of the false discovery rate
procedure. J. R. Statist. Soc. B, 64, 499–517.

Genovese, C. R. and Wasserman, L. (2006) Exceedance control of the false discovery proportion. J. Am. Statist.
Ass., 101, 1408–1417.

Green, P. and Richardson, S. (2002) Hidden markov models and disease mapping. J. Am. Statist. Ass., 97, 1055–
1070.

Guindani, M., Müller, P. and Zhang, S. (2009) A Bayesian discovery procedure. J. R. Statist. Soc. B, 71, 905–925.
Heller, R. (2010) Comment: Correlated z-values and the accuracy of large-scale statistical estimates. J. Am. Statist.

Ass., 105, 1057–1059.
Heller, R., Stanley, D., Yekutieli, D., Rubin, N. and Benjamini, Y. (2006) Cluster-based analysis of fmri data.

Neuroimage, 33, 599–608.
Lehmann, E. L. and Romano, J. P. (2005) Testing Statistical Hypotheses. New York: Springer.
Meinshausen, N., Bickel, P. and Rice, J. (2009) Efficient blind search: optimal power of detection under compu-

tational cost constraints. Ann. Appl. Statist., 3, 38–60.
Miller, C., Genovese, C., Nichol, R., Wasserman, L., Connolly, A., Reichart, D., Hopkins, A., Schneider, J. and

Moore, A. (2007) Controlling the false-discovery rate in astrophysical data analysis. Astron. J., 122, 3492–3505.
Müller, P., Parmigiani, G. and Rice, K. (2007) Fdr and bayesian multiple comparisons rules. In Bayesian Statistics

8 (eds J. M. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. F. M. Smith and M. West). Oxford:
Oxford University Press.

Müller, P., Parmigiani, G., Robert, C. P. and Rousseau, J. (2004) Optimal sample size for multiple testing: the case
of gene expression microarrays. J. Am. Statist. Ass., 99, 990–1001.

Newton, M. A., Noueiry, A., Sarkar, D. and Ahlquist, P. (2004) Detecting differential gene expression with a
semiparametric hierarchical mixture method. Biostatistics, 5, 155–176.

Owen, A. B. (2005) Variance of the number of false discoveries. J. R. Statist. Soc. B, 67, 411–426.
Pacifico, M. P., Genovese, C., Verdinelli, I. and Wasserman, L. (2004) False discovery control for random fields.

J. Am. Statist. Ass., 99, 1002–1014.
Peng, G., Luo, L., Siu, H., Zhu, Y., Hu, P., Hong, S., Zhao, J., Zhou, X., Reveille, J. D., Jin, L., Amos, C. I. and

Xiong, M. (2009). Gene and pathway-based second-wave analysis of genome-wide association studies. Eur. J.
Hum. Genet., 18, 111–117.

Pyne, S., Futcher, B. and Skiena, S. (2006) Meta-analysis based on control of false discovery rate: combining yeast
chip-chip datasets. Bioinformatics, 22, 2516–2522.

Sarkar, S. K. (2002) Some results on false discovery rate in stepwise multiple testing procedures. Ann. Statist., 30,
239–257.

Schwartzman, A., Dougherty, R. F. and Taylor, J. E. (2008) False discovery rate analysis of brain diffusion
direction maps. Ann. Appl. Statist., 2, 153–175.

Schwartzman, A. and Lin, X. (2011) The effect of correlation in false discovery rate estimation. Biometrika, 98,
199–214.

Storey, J. D. (2002) A direct approach to false discovery rates. J. R. Statist. Soc. B, 64, 479–498.
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy,

S. L., Golub, T. R., Lander, E. S. and Mesirov, J. P. (2005) Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natn. Acad. Sci. USA, 102, 15545–15550.

Sun, W. and Cai, T. T. (2007) Oracle and adaptive compound decision rules for false discovery rate control.
J. Am. Statist. Ass., 102, 901–912.

Sun, W. and Cai, T. T. (2009) Large-scale multiple testing under dependence. J. R. Statist. Soc. B, 71, 393–424.
Wei, Z. and Li, H. (2007) A markov random field model for network-based analysis of genomic data. Bioinfor-

matics, 23, 1537–1544.
Wei, Z., Sun, W., Wang, K. and Hakonarson, H. (2009) Multiple testing in genome-wide association studies via

hidden markov models. Bioinformatics, 25, 2802–2808.
Wu, W. B. (2008) On false discovery control under dependence. Ann. Statist., 36, 364–380.
Zaykin, D. V., Zhivotovsky, L. A., Westfall, P. H. and Weir B. S. (2002) Truncated product method for combining

p-values. Genet. Epidem., 22, 170–185.

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:

‘Web appendix for “False discovery control in large-scale spatial multiple testing”’.


