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Abstract When analyzing point-referenced spatial data, interest will be in the first
order or global behavior of associated surfaces. However, in order to better
understand these surfaces, we may also be interested in second order or local
behavior, e.g., in the rate of change of a spatial surface at a given location in a given
direction. In a Bayesian parametric setting, such smoothness analysis has been
pursued by Banerjee and Gelfand (2003) and Banerjee et al. (2003). We study
continuity and differentiability of random surfaces in the Bayesian nonparametric
setting proposed by Gelfand et al. (2005), which is based on the formulation of a
spatial Dirichlet process (SDP). We provide conditions under which the random
surfaces sampled from a SDP are smooth. We also obtain complete distributional
theory for the directional finite difference and derivative processes associated with
those random surfaces. We present inference under a Bayesian framework and
illustrate our methodology with a simulated dataset.

Keywords Bayesian nonparametrics . Directional derivatives . Dirichlet process
mixture models . Finite differences . Matèrn correlation function, nonstationarity

AMS 2000 Subject Classification 62M30 (Spatial Processes) .

62F15 (Bayesian Inference)

1 Introduction

In many applications dealing with the analysis of point-referenced spatial data, it is
often desired to study local features of the processes under investigation like
smoothness and gradient behaviors at given locations and for given directions. For
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example, in modelling for real estate data, land values are predicted to vary with the
distance from a Central Business District (CBD)(see Majumdar et al., 2004).
However, at any particular location, the gradient in land values may depend upon
direction, e.g., perhaps steeper in the direction toward the CBD, perhaps more flat
in the directional orthogonal to this. In digital-terrain models, estimation of slopes is
crucial for creating digital representations of topographic surfaces that are widely
used in earth and environmental sciences. Other domains of application include
meteorology for recognizing temperature or rainfall gradients and environmental
monitoring for understanding pollution gradients.

Such models presume for a region of study D, a collection of random variables
Y sð Þ; where s indexes the locations in D: The set Y sð Þ : s 2 Df g can be viewed as a
randomly realized surface over the region. In practice, this surface is only observed
at a finite set of locations, say s1; s2; :::; sn: It is evident that detecting smoothness of
process realizations from finitely sampled data is challenging, perhaps hopeless.
Rather, it is more suitable to capture such smoothness in the specification of the
process, motivated by mechanistic considerations associated with the process yielding
the data.

Customarily, the model incorporates both a mean trend along with local
adjustments to this trend arising as realizations from a random surface (or surfaces).
Of course, continuity and differentiability issues are handled differently in the two
cases. While gradients for the nonspatial component of the mean are obtained
through ordinary multivariable calculus, smoothness of random surfaces needs an
entirely stochastic framework.

In this regard, Kent (1989) provides formal discussion of the notion of almost
sure (a.s.) continuity for stationary random fields. Building upon the existing theory
for stochastic processes on the real line (see Stein, 1999), Banerjee and Gelfand
(2003) examine mean square continuity and mean square differentiability when D is
a subset of the d-dimensional Euclidean space (d � 2). All notions can be
characterized through the process covariance structure and can be formalized in
the context of univariate and multivariate processes. Banerjee et al. (2003) consider
the subject from a modelling perspective, introducing directional finite difference
and directional derivative processes in the case of stationary Gaussian spatial
processes (GP). They provide distributional details for individual and multiple
gradients and show how to implement full inference with regard to rates of change
in a Bayesian framework.

However, in many cases, both the Gaussian and stationarity assumptions will be
viewed as inappropriate. Distribution of real data is often clearly non-Gaussian, e.g.,
it exhibits heavy tail behavior or multimodal distributions. The problem has been
overcome in different ways in the literature, for example assuming that the random
field of interest is the result of an unknown transformation of a GP (De Oliveira et
al., 1997) or by means of generalized linear spatial models (Diggle et al., 1998).
Palacios and Steel (2004) accommodate non-Gaussian behavior by means of scale
mixing of the spatial components in a spatial random effects model. On the other
hand, flexible and computationally tractable modelling to remove the stationarity
assumption includes the spatially varying kernel approach of Higdon et al. (1999)
and the local stationarity approach of Fuentes and Smith (2001) but both are still
within the setting of GP_s. The fundamental paper of Sampson and Guttorp (1992)
introduces a nonparametric specification for the covariance function, as does
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followup effort by Damian et al. (2001) and Schmidt and O_Hagan (2003) but again,
all of this work employs a GP in the likelihood.

Recently, Gelfand et al. (2005) have proposed a spatial Dirichlet process (SDP)
mixture model to produce a random spatial process that is neither Gaussian nor
stationary. The SDP explicitly adopts the distribution of a stochastic process as its
base measure. This is assumed to be stationary and Gaussian; nevertheless the
resulting process is nonstationary and the joint finite dimensional distributions are
not normal. The use of the SDP specification to model the distribution of the spatial
component in a spatial random effect model leads to a fully Bayesian semi-
parametric approach that, for fitting purposes, relies on well-known results and
algorithms developed for Dirichlet process (DP) mixing. See, among others,
Escobar and West (1995) and MacEachern and Müller (1998).

Our contribution is to provide conditions under which the random surfaces
sampled from a SDP are smooth. As might be expected, such conditions are related to
the behavior of the base spatial process. We also consider the gradient processes
associated with those random surfaces, obtaining complete distributional theory
results. In particular, we show that the directional finite difference and derivative
processes are themselves samples from a SDP, whose base measure is the distribution
of the corresponding gradient for the original base stochastic process. The use of
nonparametric specifications typically requires the availability of a set of replicates, as
in the foregoing work of Sampson and Guttorp (1992), Damian et al. (2001) and
Schmidt and O_Hagan (2003). More precisely, as noted in Gelfand et al. (2005),
replication is needed in order to learn about the unknown distribution function of
the spatial component in a nonparametric approach. Without replicates, we would
fall back on a conventional parametric specification. Well-known results in the
literature ensure consistency of DP mixtures (see Ghosal et al., 1999). Moreover, we
can embed the replications within a dynamic model as in Duan et al. (2005) to
remove the independence assumption. In the sequel we work with independent
replications of the spatial surface, employing a simulated dataset in order that we
can validate our performance.

Gradient analysis of the sort we undertake, but confined to Gaussian processes, has
been presented in the context of temperature surfaces in Banerjee and Gelfand (2005)
and in the context of land value surfaces in Majumdar et al. (2004). Using annual
data as replications, in both cases our nonparametric SDP approach could be
implemented.

The format of the paper is as follows. A summary of basic definitions and results
on smoothness of spatial processes is presented in Section 2.1, while Section 2.2
reviews the spatial Dirichlet process model as developed in Gelfand et al. (2005). In
Section 3, we discuss some theoretical results on continuity and differentiability of
random surfaces sampled from a SDP. Distribution theory of the gradient processes
is provided in Section 4. In particular, we show that directional finite differences and
derivatives are still samples from a SDP. In Section 5, the SDP is used to model the
spatial component in a random spatial effect model, as in Gelfand et al. (2005).
There we also discuss model fitting and inferential issues related to gradients.
Section 6 presents the computational strategy for fitting such models in a Bayesian
setting. Finally, Section 7 offers an example, intended to reveal the relevant features
of our model with respect to competing parametric ones. Section 8 concludes with a
summary and discussion.
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2 A Review

2.1 Smoothness Properties of Spatial Processes

In this section, we review smoothness properties for spatial processes. For simplicity,
we assume that the topology on the space where the random field is defined is
induced by the usual Euclidean norm. However, the results extend to an arbitrary
Banach space. In our investigation of smoothness properties we look at two types of
continuity for process realizations, continuity in the L2 sense and almost sure (a.s.)
continuity. Unless otherwise noted, we assume the processes to have 0 mean and
finite second-order moments.

DEFINITION A process fYðsÞ; s 2 Rdg is mean square continuous (also said, L2-
continuous) at s0 if limjjs�s0jj!0 E½YðsÞ � Yðs0Þ�2 ¼ 0: We will denote mean square
continuity at s0 as YðsÞL2!Yðs0Þ.

DEFINITION A real valued process fYðsÞ; s 2 Rdg is almost surely continuous at s0 if
YðsÞ ! Yðs0Þ with probability one as jjs� s0jj ! 0. If the process is almost surely
continuous for every s0 2 Rd then the process is said to have continuous realizations.

In general, one form of continuity does not imply the other since one form of
convergence does not imply the other. However, if YðsÞ is a bounded process then
a.s. continuity implies L2 continuity. Of course, each implies that YðsÞp!Yðs0Þ.

Notice that such definitions apply to an arbitrary (possibly nonstationary)
stochastic process. However, Kent (1989) has provided sufficient conditions to
ensure a.s. continuity of stationary random fields. Specifically, let fYðsÞ; s 2 Rdg be
a real valued (weakly) stationary random field. Kent proves that if the covariance
function CovðYðsÞ;Yðsþ hÞÞ ¼ KðhÞ is d-times continuously differentiable with
respect to h and KdðhÞ ¼ KðhÞ � PdðhÞ; where PdðhÞ, the Taylor polynomial of
degree d for KðhÞ about h ¼ 0, satisfies the following condition

jKdðhÞj ¼ O jjhjjdþ�
� �

as jjhjj ! 0 ð1Þ

for some � > 0, then there exists a version of the random field fYðsÞ; s 2 Rdg with
continuous realizations. In particular, the previous condition is true whenever KðhÞ
is dþ 1-times differentiable.

For YðsÞ a weakly stationary process with covariance function KðhÞ, where
h ¼ s� s0, mean square continuity reduces to whether limjjhjj!0 2 Kð0Þ �KðhÞ½ � ¼ 0,
so that YðsÞ is mean square continuous if and only if KðhÞ is continuous at the
origin. Notice that if KðhÞ is continuous at the origin, then it is continuous every-
where. As Banerjee and Gelfand (2003) note, if YðsÞ satisfies Kent_s sufficient
condition for a.s. continuity, KðhÞ is d-times differentiable, therefore continuous at
0. It follows that processes satisfying Kent condition are also mean square continuous.

Following Banerjee and Gelfand (2003) and Banerjee et al. (2003), mean square
differentiability is motivated by the analogous definition of total differentiability of
a function in Rd in multivariate calculus.
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DEFINITION A process fYðsÞ; s 2 Rdg is said to be mean square differentiable at s0 if
there exists a vector rYðs0Þ such that, for any scalar h and any unit vector
u 2 Rd(jjujj ¼ 1),

Yðs0 þ huÞ ¼ Yðs0Þ þ huTrYðs0Þ þ rðs0; huÞ; ð2Þ

where rðs0; huÞ ! 0 in the L2 sense as h! 0.

This definition ensures that if YðsÞ is a mean square differentiable process on Rd,
then it is mean square continuous as well. This result follows directly from (2), since
rðs0; huÞ ! 0 in the L2 sense as h! 0 and uTrYðs0Þ is a constant with respect to h.

For d ¼ 1, Stein (1999) shows that a stationary process YðsÞ on the real line is
mean square differentiable if and only if its covariance function is twice dif-
ferentiable and K00ð0Þ exists and is finite.

Next, we define a gradient process. We start defining the directional finite dif-
ference process Yu;hðsÞ at scale h in direction u as

Yu;hðsÞ ¼
Yðsþ huÞ � YðsÞ

h
:

Finite difference processes measure the rate of change of a process in a given di-
rection u and at a certain scale h. They can be usefully employed whenever scale is
of importance.

Note that if EðYðsÞÞ ¼ 0 for all s 2 Rd, then also EðYu;hðsÞÞ ¼ 0. Let C
ðhÞ
u ðs; s0Þ

denote the covariance function associated with the process Yu;hðsÞ and let D ¼ s� s0

denote the separation vector. Then, if YðsÞ is stationary

CðhÞu ðs; s0Þ ¼
2KðDÞ �KðDþ huÞ �KðD� huÞ

h2
: ð3Þ

In particular, for D ¼ 0, VarðYu;hðsÞÞ ¼ 2ðKð0Þ �KðhuÞÞ=h2.
If YðsÞ is isotropic,

CðhÞu ðs; s0Þ ¼
2KðjjDjjÞ �KðjjDþ hujjÞ �KðjjD� hujjÞ

h2
: ð4Þ

Hence, although the original process is isotropic, the finite difference process is only
stationary. Also, VarðYu;hðsÞÞ ¼ 2ðKð0Þ �KðhÞÞ=h2.

The directional derivative process DuYðsÞ in direction u is obtained as the limit in
the L2 sense of the finite difference process Yu;hðsÞ, as h! 0, that is

lim
h!0

E½Yu;hðsÞ �DuYðsÞ�2 ¼ 0;

if the limit exists. If EðYðsÞÞ ¼ 0 for all s 2 Rd, then also EðDuYðsÞÞ ¼ 0. Let Cuðs; s0Þ
define the covariance function associated with the process DuYðsÞ. Then, it can be
shown that for any pair of locations s; s0 2 D

Cuðs; s0Þ ¼ lim
h!0

CðhÞu ðs; s0Þ; ð5Þ
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that is the covariance function of the process is obtained as the limit of the
covariance function of the associated finite difference process, as h! 0. In
particular, if YðsÞ is a stationary process and its covariance function has continuous
second order partial and mixed derivatives, then

CuðDÞ ¼ �uTWðDÞu; ð6Þ

where ðWðDÞÞi;j ¼ @2K
@Di@Dj

. Thus, VarðDuYðsÞÞ ¼ �uTWð0Þu.
If YðsÞ is isotropic, the directional derivative process will be stationary but not

isotropic, since we can show that (6) becomes

CuðDÞ ¼ � 1� ðu
TDÞ2

jjDjj2

 !
K0ðjjDjjÞ
jjDjj þ

ðuTDÞ2

jjDjj2
K00jjDjjÞ

( )
: ð7Þ

If K00ð�Þ is continuous at 0 and we let D! 0 in (7), then limD!0 Cuðs; s0Þ ¼ �K00ð0Þ. It
follows that CuðDÞ is a valid covariance function continuous at zero. Therefore, the
underlying directional derivative process is mean square continuous.

Notice that the above results rely on the existence of the second derivatives of the
covariance function Kð�Þ implying that directional derivatives processes do not exist
for all Kð�Þ. For instance, the only function differentiable at 0 in the so called power
exponential family, KðjjDjjÞ ¼ �2 expð��jjDjj�Þ, 0 < � � 2, is the Gaussian (� ¼ 2)
covariance function. However, the Gaussian covariance function produces process
realizations that are too smooth, in fact analytic, as can be seen from the fact that
Kð�Þ is infinitely differentiable (see Stein, 1999).

Instead, consider the Matèrn class (see Matern (1986) and Handcock and Stein
(1993)), KðjjhjjÞ ¼ 2��þ1�2

Gð�Þ �jjhjjð Þ�H� �jjhjjð Þ, for � > 0, � > 0, and � > 0, where
H�ð�Þ is the modified Bessel function of order � (see Abramowitz and Stegun (1965),
ch. 9). For � ¼ 1

2, the Matèrn covariance function reduces to the exponential case;
for � ¼ 3

2, we get KðjjhjjÞ ¼ �2 expð��jjhjjÞ 1þ �jjhjjð Þ. The parameter � is a decay
parameter, while � controls the degree of smoothness of the process. More precisely,
Stein (1999) shows that a real process YðsÞ with Matèrn covariance function is m-
times mean square differentiable if and only if � > m.

The existence of the directional derivative process in all directions u does not
necessarily imply that the process is mean square differentiable (see Banerjee and
Gelfand (2003) for further discussion and a counterexample). However, if YðsÞ is a
mean square differentiable process in Rd, i.e., (2) holds for every s in Rd, then the
directional derivative process DuYðsÞ exists for every u and DuYðsÞ ¼ uTrYðs0Þ a.s..

Note that if the unit vectors e1; e2; . . . ; ed form an orthonormal basis set for Rd,
any unit vector u in Rd can be written as u ¼

Pd
i¼1 wiei, with wi ¼ uTei andPd

i¼1 w2
i ¼ 1. It follows that

DuYðsÞ ¼ uTrYðsÞ ¼
Xd

i¼1

wie
T
i rYðsÞ ¼

Xd

i¼1

wiDei
YðsÞ: ð8Þ

Hence, to study directional derivative processes in an arbitrary direction u, we need
only to know a basis set of directional derivative processes. These can always be
taken to be defined by the coordinate axes, so that ei is a d� 1 vector with all 0_s
except for a 1 in the i-th row. In fact, with this basis, rYðsÞ ¼ ðDe1

YðsÞ; . . . ;
Den

YðsÞÞT . Notice that reduction to a basis set is not possible for finite difference
processes, as it is evident from the presence of h in (2). From (8), it is also clear that
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D�uYðsÞ ¼ �DuðsÞ. Applying the Cauchy-Schwarz inequality to (8), for every unit
vector u, D2

uYðsÞ �
Pd

i¼1 D2
e1

YðsÞ: Hence,
Pd

i¼1 D2
e1

YðsÞ is the maximum over all
directions of D2

uYðsÞ.

2.2 The Spatial Dirichlet Process

We begin by developing a model for point referenced spatial data assumed to arise
as a sample from a realization of a random field YD � YðsÞ : s 2 Df g, D � Rd.
Denote by sðnÞ ¼ ðs1; :::; snÞ the specific distinct locations in D where the observa-
tions are collected. When a Gaussian random field is assumed, a multivariate normal
specification for the observed data results. In order to allow for deviations from this,
arguably restrictive, assumption, we propose a nonparametric model for the random
field with an associated induced model for the distribution of ðYðs1Þ; :::;YðsnÞÞ. We
assume that we have available replicate observations at each location and therefore
that the full data set consists of the collection of vectors Yt = ðYtðs1Þ; :::;YtðsnÞÞ0, t =
1,...,T. In fact, we can accommodate imbalance or missingness in the YtðsiÞ through
customary latent variable methods.

A frequent approach for specifying random distributions is the Dirichlet process
(DP) (Ferguson, 1973, 1974). In particular, given the space Q (equipped with a �-
field B), let DP(�G0) denote the DP, where � > 0 is a scalar (precision parameter)
and G0 a specified base distribution defined on (Q;B). A random distribution
function on (Q;B) arising from DP(�G0) is almost surely discrete and admits the
representation

P1
j¼1 pj ��*j , where �z denotes a point mass at z, p1 = q1, pj =

qj

Qj�1
r¼1(1� qr), j = 2,3,..., with fqr; r ¼ 1; 2; :::g i.i.d. from Beta(1; �) and indepen-

dently f�*j ; j ¼ 1; 2; :::g i.i.d. from G0 (Sethuraman, 1994). In this notation �*
j

is
assumed to be scalar or perhaps vector valued, the latter case leading to a mul-
tivariate DP.

To model YD, following Gelfand et al. (2005), one can conceptually extend �*j to
a realization of a random field by replacing it with ��*j;D ¼f�*j ðsÞ : s 2 Dg. For
instance, G0 might be a stationary GP with each ��*j;D being a realization from G0,
i.e., a surface over D. The resulting random distribution, G, for YD is denoted byP1

j¼1 pj���*j;D and the construction will be referred to as a spatial Dirichlet process
model. From now on, YDjG � fYðsÞ; s 2 DjGg will explicitly denote a field whose
distribution is a given realization of G. The interpretation is that for sðnÞ as above, G
induces a random probability measure Gðs

ðnÞÞ on the space of distribution functions
for ðYðs1Þ; :::;YðsnÞÞ. (To simplify notation, we will use GðnÞ instead of Gðs

ðnÞÞ in what
follows.) Thus, we have that GðnÞ 	 DPð�G

ðnÞ
0 Þ, where G

ðnÞ
0 � G

ðsðnÞÞ
0 is the n-variate

distribution for ðYðs1Þ; :::;YðsnÞÞ induced by G0 (e.g., an n-variate normal if G0 is
taken to be a GP).

Gelfand et al. note a connection between the spatial DP above and the notion of a
dependent Dirichlet process (DDP) as developed by MacEachern (2000). The DDP
provides a formal framework within which to describe a stochastic process of ran-
dom distributions. These distributions are dependent but such that, at each index
value, the distribution is a univariate DP. In the above setting, G induces a random
distribution Gsð�Þ � GðYðsÞÞ for each s, hence the set GD � GðYðsÞÞ : s 2 Df g.
MacEachern (2000, Theorem 3.1) provides sufficient conditions such that GD will be
a DDP.
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For G arising from G0 and �, note that given G, EðYðsÞ j GÞ ¼
P

pj �*j ðsÞ and
VarðYðsÞ j GÞ ¼

P
pj �*

2
j ðsÞ � f

P
pj �*j ðsÞg

2. Moreover for a pair of sites si and sj,

CovðYðsiÞ;YðsjÞ j GÞ ¼
X

pl �*l ðsiÞ �*l ðsjÞ �
X

pl �*l ðsiÞ
n o X

pl �*l ðsjÞ
n o

: ð9Þ

Hence, the random process G has heterogeneous variance and is nonstationary.
Marginalizing over G simplifies the above expressions. For example, assume a mean
zero stationary GP for G0 with variance �2 and correlation function ��ðsi � sjÞ,
where the (possibly vector valued) parameter � specifies ��ð�Þ. Then EðYðsÞÞ = 0,
VarðYðsÞÞ = �2 and CovðYðsiÞ;YðsjÞÞ = �2��ðsi � sjÞ. Though G is centered around a
stationary process with constant variance, it has nonconstant variance and is
nonstationary.

3 Smoothness Properties of the Spatial Dirichlet Process

In this section, we consider the random surfaces arising as samples from a SDP and
investigate their smoothness properties. In particular, their continuity is examined in
Section 3.1, while we discuss differentiability in Section 3.2.

3.1 Almost Sure and Mean Square Continuity of Samples from a SDP

In Section 2.1, the smoothness of the random surface YD is studied on the basis of a
given distributional assumption, in fact a given covariance function. Instead, if we
assume a SDP model (or any other nonparametric specification), the distribution G
of YD is itself random. Let P denote the distribution of the random G. In other
words, P � DPð�G0Þ. In a SDP, the observed data are assumed to come from a given
realization of G. Therefore, the object of our interest is the smoothness of the
surfaces sampled from the realized G, that is the behavior of YDjG ¼ fYðsÞ;
s 2 DjGg. This is analogous to the usual parametric context, where we are interested
in properties of a field whose distribution is indexed by a finite number of
parameters. Evidently, we could ask whether this smoothness holds a.s. over the
parameter space. With a finite dimensional space, this is actually immediate.

Turning to the SDP, if G admits the Sethuraman representation and G0 is
a.s. continuous then G will be as well. From a different perspective, let Cs0

¼
fYD : limjjs�s0jj!0 YðsÞ ¼ Yðs0Þg, i.e., the set of all surfaces continuous at s0. Then we
say that YD is a.s. continuous at a point s0 if GðCs0

Þ ¼ 1 with P-probability one. This
is not a probability statement given G but rather a statement over an infinite
dimensional space. In particular, if we denote with S the set of random distribution
functions chosen according to the Sethuraman"s representation, we know that
PðSÞ ¼ 1 and in the previous definition we can consider all G in S. Analogously, we
say that YD is mean square continuous at a point s0 if E½YðsÞ2jG� < 1 and
E½ðYðsÞ � Yðs0ÞÞ2jG� ! 0 as jjs� s0jj ! 0 with P-probability one. Again, to in-
vestigate the mean square continuity of samples from a SDP, we can limit the study
to random surfaces drawn according to a G in S. With regard to a.s. continuity, we
first show the connection between the behavior of the base random field and the
surfaces sampled from a SDP in the following theorem, whose proof is provided in
the Appendix.
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PROPOSITION 1 Any random field YD sampled from a SDP is a.s. continuous IFF the
random field G0 is a.s. continuous.

Proposition 1 is actually an extension of a previous result in Gelfand et al. (2005)
and MacEachern (2000). There it is shown that if G0 is a.s. continuous, then YðsÞ
converges weakly to Yðs0Þ as jjs� s0jj ! 0 with P-probability one. Theorem 1
proves that YD is indeed a.s. continuous. Nevertheless, in the non-parametric
context, weak convergence of the samples translates into a.s. convergence of
GðYðsÞÞ, the marginal distribution of YðsÞ, to GðYðs0ÞÞ, the marginal distribution of
Yðs0Þ. Therefore, the result in Gelfand et al. (2005) and MacEachern (2000) can be
more conveniently restated as in the following proposition, for which, again, we
provide a proof in the Appendix.

PROPOSITION 2 In a SDP, if the base measure G0 is a.s. continuous in s0, then the
random probability measure GðYðs0ÞÞ converges a.s. to GðYðs0ÞÞ as jjs� s0jj ! 0.

Now, we turn to mean square continuity. One point is critical here. If we
marginalize with respect to the unknown G, mean square continuity of YD follows
easily from mean square continuity of the base process, since E½ðYðsÞ � Yðs0ÞÞ2� ¼
EG0
½ð�*1 ðsÞ � �*1 ðs0ÞÞ2�: In fact, we are not interested in YD, which after margin-

alization is indeed an expected sample from P, but in YDjG, the realized surface.
Since E½ðYðsÞ � Yðs0ÞÞ2� ¼ E E ðYðsÞ � Yðs0ÞÞ2jG

h in o
; we could expect that mean

square continuity of the base measure implies mean square continuity of YDjG. But,
of course, this is not true, since L1 convergence does not imply a.s. convergence, as
would be required. Therefore, when we fix a distribution G, mean square continuity
of the base measure is not enough to claim mean square continuity of the samples
YD from G. This is not totally unexpected, since any G is a discrete probability
measure with probability one, and therefore we expect its smoothness properties to
depend on the smoothness of the �*j;D, j ¼ 1; 2; . . . which define the support of the
realized G. In fact, we can prove the following sufficient condition to ensure mean
square continuity with respect to G (see the Appendix for a proof):

PROPOSITION 3 Let G0 be a separable process a.s. continuous on a compact K 
 D.
Then, any random field YD sampled from a SDP is mean square continuous on K.

For constant mean (centered) Gaussian processes, a.s. continuity on a compact is
equivalent to a.s. boundedness (see Theorem 2.6.4 in Adler and Taylor, 2003), so
that Proposition 3 can be restated in terms of Gaussian stationary fields with a.s.
bounded realizations, e.g., such that Eðsups2K �*ðsÞÞ <1. Under such condition, we
can apply the bounded convergence theorem to obtain mean square continuity
of the base measure, a fortiori of the marginal YD, since limjjs�s0jj!0 E½ð�*ðsÞ �
�*ðs0ÞÞ2� ¼ E½limjjs�s0jj!0ð�*ðsÞ � �*ðs0ÞÞ2�:

Let Gs � GðYðsÞÞ and G0;s � G0ð�*ðsÞÞ indicate, respectively, the random
marginal distribution of YðsÞ given G and the marginal base measure in s. Also,
consider the marginal model described by YðsÞjGs 	 Gs where Gs 	 DPð�;G0;sÞ. It
is possible to prove that if G0;s converges weakly to G0;s0

, then GðYðsÞÞ converges in
distribution to GðYðs0ÞÞ, i.e., Yðs0ÞjGs0

	 Gs0
and Gs0

	 DPð�;G0;s0
Þ. Notice that

this result involves only the marginal DP. Therefore, it remains valid for a greater
class of models, e.g., the DDP models (see Section 2.2). Intuitively, we can see this
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by the following argument. Recall that E YðsÞjG½ � ¼
P1

j¼1 pj �*j ðsÞ a.s.-P by
Sethuraman_s representation, where the �*j _s are i.i.d. draws from G0, chosen
independently from pj, j ¼ 1; 2; . . .. Since each �*j ðsÞ converges in distribution to
�*j ðs0Þ, we can conclude that E YðsÞjGs½ � converges in distribution to E Yðs0ÞjGs0

½ � ¼P1
j¼1 pj �*j ðs0Þ, which is the mean of the probability mass function Gs0

ð�Þ ¼P1
j¼1 pj ��*j

ðs0Þð�Þ. Therefore, we can expect the limit Yðs0Þ to be a sample from a
DP with smooth parameter � and base measure given by G0;s0

. In fact, the above is a
particular case of a more general result, which is stated in the next proposition (see
the Appendix for the proof).

PROPOSITION 4 Let YðsÞjGs 	 Gs, Gs 	 DPð�G0;sÞ, s 2 D. Let gð�Þ be a real valued
measurable function, integrable with respect to G0;s and denote with G

g
0;s the

distribution of gð�*ðsÞÞ induced from G0;s. Further, suppose that G
g
0;s converges

weakly to a distribution H0;s0
, as jjs� s0jj ! 0, where s0 is a point in D. Then, gðYðsÞÞ

converges in distribution to a random variable Zðs0Þ, which is a sample from a DP
with parameter � and base measure H0;s0

.

3.2 Mean Square Differentiability of Samples from a SDP

Now we turn attention to mean square differentiability of a process arising from a
SDP. For any given G, unit vector u and scalar h > 0, we consider the finite
differences Yu;hðsÞ and define the directional derivative DuYðsÞ as the L2 limit of the
finite difference process with respect to G, i.e.,

lim
h!0

E Yu;hðsÞ �DuYðsÞ
� �2jG
h i

¼ 0; ð10Þ

if the limit exists. If DuYðsÞ exists for all s 2 D, then we will denote the directional
derivative process by DuYD. In particular, if DuYðsÞ is a linear function of u, we say
that YDjG is mean square differentiable.

Again, if we marginalize with respect to the unknown G, the differentiability of
YD follows immediately from that of the base measure. In fact, for any scalars
hn; hm > 0, and any s 2 D, E ½ Yu;hn

ðsÞ � Yu;hm
ðsÞ

� �2� ¼ EG0
½ð�*u;hn

ðsÞ � �*u;hm
ðsÞÞ2�,

that is any Cauchy sequence in L2 with respect to G0 is a Cauchy sequence with
respect to P, and the limits are the same. However, when we condition to a given
realization G of the SDP, mean square differentiability of the base measure is not
enough to conclude about mean square differentiability of YDjG. In fact, the latter
relies on the analytical properties of the surfaces specifying the realized support of
G, similarly to what discussed in Proposition 3 above.

PROPOSITION 5 Let G0 be a.s. continuously differentiable on a compact K 
 D.
Then, any random field YD sampled from a SDP is mean square differentiable on�
K ¼ intðKÞ.

Banerjee and Gelfand (2003) discuss conditions on the covariance function KðsÞ
of a stationary process in order that the directional derivative process Du�*D has a.s.
continuous realizations. Suppose KðsÞ 2 Cdþ2, meaning it is dþ 2-times continuous-
ly differentiable. Let PdðsÞ denote the Taylor polynomial in s of degree d and KdðsÞ
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denote the remainder term, i.e., KdðsÞ ¼ KðsÞ � PdðsÞ. Then, applying Kent_s (1989)
result to the covariance of the directional derivative process, they conclude that a
sufficient condition for a stationary process to have a.s. continuous derivatives is that
KdðsÞ ¼ Oðjjsjjdþ2þ�Þ, for some � > 0.

In conclusion, even if the base process G0 is mean square differentiable, it does
not follow that YDjG is, with respect to the observed realization of the random
probability measure. However, if we marginalize with respect to G, the marginal
process is of course mean square differentiable, since its distribution coincides with
that of G0. In the next section, we will apply Proposition 4 to show that the limit
DuYD is indeed obtained as a sample from a SDP whose base measure is the
distribution of Du�*D, i.e., the directional derivative process associated with G0.
Therefore, we can say that the smoothness properties of the base measure are
reflected in the samples, in the sense of the induced convergence of the random
probability measures.

4 Some Distribution Theory

Let YD � fYðsÞ; s 2 Dg be a random field sampled from a SDPð�G0Þ and Yu;hðsÞ be
the associated directional finite difference process. Then it is easy to prove that also
Yu;hðsÞ is a sample from a SDP with same precision parameter � and with base
measure the distribution of the finite difference process �*u;hðsÞ, say Gu;h

0 . In fact, for
any pair ðs; sþ huÞ 2 D and any real t, consider

P Yu;hðsÞ � t
���G

� �
¼ P Yðsþ huÞ � YðsÞ þ th

���G
� �

¼
X1

j¼1

pj Ið�1; �*j ðsÞþth�ð�*j ðsþ huÞÞ; a:s:<P

by the Sethuraman representation of the SDP. We can rewrite the indicator function
as

Ið�1; �*j ðsÞþth�ð�*
j ðsþ huÞÞ ¼ Ið�1;t� �

*j
u;hðsÞ

� �
;

so to conclude that Yu;hðsÞjG is a sample from
P1

j¼1 pj ��*
j

u;hðsÞ
ð�Þ, i.e., from a SDP with

precision parameter � and base distribution Gu;h
0 . We denote the random probability

measure so defined as Gu;h and notice that it is directly induced from G for any
given u and h. Therefore, the necessary distribution theory for the directional finite
difference process is obtained from the general theory of the SDP. In particular, its
first and second moments are given by

EðYu;hðsÞjGÞ ¼
Xþ1

j¼1

pj �*
j

u;h
ðsÞ;

EðY2
u;hðsÞjGÞ ¼

Xþ1

j¼1

pj �*
j

u;h
ðsÞ

� �2

;

and for any pair of locations ðs; s0Þ in D,
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Cov ðYu;hðsÞ;Yu;hðs0ÞjGÞ ¼
Xþ1

j¼1

pj �*
j

u;hðsÞ �*
j

u;hðs0Þ �
Xþ1

j¼1

pj �*
j

u;hðsÞ
( )

�
Xþ1

j¼1

pj �*
j

u;hðs0Þ
( )

;

while the distribution of the marginal process Yu;hðsÞ is the same as the distribution
of the base process �*u;hðsÞ (see Section 2.1).

Now consider the directional derivative process DuYðsÞ and suppose that G0

admits a directional derivatives process for each u. Let G00;u denote the distribution
of the process Du�*ðsÞ. Then, we can apply Proposition 4 in order to prove that
DuYðsÞ is a sample from a SDP with smooth parameter � and base measure G00;u. In
symbols, DuYðsÞjG0u 	 G0u and G0u 	 SDPð�G00;uÞ. In fact, we have shown that for
any direction u and any fixed h, the finite difference process Yu;hðsÞ is a sample from
a SDP, i.e., Yu;hðsÞjGu;h 	 Gu;h, Gu;h 	 SDPð�Gu;h

0 Þ. Therefore, marginally at any
given site s, Yu;hðsÞ is just a sample from a DP(�Gu;h

0;s Þ, where Gu;h
0;s is the marginal

distribution of Gu;h
0 in s. Since G0 admits directional derivatives in all directions,

Gu;h
0;s converges weakly to G00;u. Hence, the conditions of Proposition 4 are satisfied

and the previous assertion is proved.
Intuitively, this can also be seen in another way. In fact, since

E Yu;hðsÞ �DuYðsÞ
� �2jG
� �

� E Yu;hðsÞ �DuYðsÞjG
� �� �2

;

from the mean square convergence of �*u;hðsÞ to Du�*ðsÞ, it follows that E Yu;hðsÞjG
� �

,
that is the mean of the DP for Yu;hðsÞ, converges in L2 (with respect to the Dirichlet
MeasureP) to the random variable E DuYðsÞjGð Þ. But E Yu;hðsÞjG

� �
¼
P1

j¼1 pj �*u;hðsÞ
a.s.-P by Sethuraman_s representation and the �*u;h_s are i.i.d. draws from Gu;h

0 , chosen
independently from pj, j ¼ 1; 2; . . .. Then, E Yu;hðsÞjG

� �
converges in distribution to

EðDuYðsÞjGÞ ¼
P1

j¼1 pj Du�*j ðsÞ, that is the mean of the probability mass functionP1
j¼1 pj �Du�*j ðsÞð�Þ, which is the almost sure representation of G0u. Therefore, it is

immediate to guess that GðYu;hðsÞÞ converges in distribution to G0uðDuYðsÞÞ, and by
the uniqueness of the limit, that DuYðsÞ is a sample from a SDP with smooth parameter
� and base measure G00;u.

From the discussion above, it is easy to extract the first and second moments of
the directional derivative process. In fact,

EðDuYðsÞjG0uÞ ¼
X1

j¼1

pj Du�*j ðsÞ;

E D2
uYðsÞjG0u

� �
¼
X1

j¼1

pj D2
u�*j ðsÞ ;

and for any pair of locations ðs; s0Þ 2 D, we have

CovðDuYðsÞ;DuYðs0ÞjG0uÞ ¼
X1

j¼1

pj Du�*j ðsÞDu�*j ðs0Þ;

�
X1

j¼1

pj Du�*j ðsÞ
( ) X1

j¼1

pj Du�*j ðs0Þ
( )

:
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Again, the distribution for the marginal process coincides with that of Du�*ðsÞ,
which has been described in Section 2.1.

In particular, if G0 is mean square differentiable, then DuYðsÞ ¼ uTrYðsÞ, where
rYðsÞ is a vector valued process, whose distribution is a realization from a SDP,
defined for all borel sets A as

PðrYðsÞ 2 AÞ ¼
X1

j¼1

pj �r�*j ðsÞ
ðAÞ;

according to Sethuraman_s representation. Here r�*j ðsÞ ¼ ðDe1
�*ðsÞ; . . . ;Ded

�*ðsÞÞ is
the vector of directional derivatives of G0 with respect to an orthonormal basis set
of directions ðe1; . . . ; edÞ.

In accordance to the discussion in Section 2.1, if the base measure is mean square
differentiable, it is possible to study the behavior of DuYðsÞjG0u in arbitrary
directions by means of an orthonormal basis ðe1; . . . ; edÞ, and DuYðsÞ ¼ uTrYðsÞ ¼Pd

i¼1 wi Dei
YðsÞ: For example, the first and second moments of the process can be

obtained as a linear combination of a basis set of moments, that is

E DuYðsÞjG0u
� �

¼
X1

j¼1

pj

Xd

i¼1

wi Dei
ð�*j ðsÞÞ ¼

Xd

i¼1

wiEðDei
YðsÞjG0uÞ

and

CovðDuYðsÞ;DuYðs0ÞjG0uÞ ¼
Xd

i¼1

w2
i CovðDei

YðsÞ;Dei
Yðs0ÞjG0uÞ:

5 Model Fitting and Inference

We work in d ¼ 2 dimensional space and assume we observe T replicates of a
random field fYðsÞ; s 2 Dg at n locations ðs1; . . . ; snÞ. In particular, let YðsÞ arise as

YtðsÞ ¼ �tðsÞ þ �tðsÞ þ etðsÞ: ð11Þ
The mean structure component can be either constant or, more frequently, a
regression form xtðsÞT�. The elements of the p-dimensional vector xtðsÞ can be
functions of geographical coordinates to capture a trend surface (therefore it is
constant across replicates). In addition, xtðsÞ can include covariates varying with t.
For example, in a study of land values gradients, Majumdar et al. (2004) consider
xðsÞ ¼ e�ks�s*k or xðsÞ ¼ 1=ðaþ ks� s*kÞb, for some reals a; b, according to the
economic theory that prescribes a decline in land values as we move away from a
central business district located at s*. As an example of the second choice, in
studying selling prices of single family homes, Banerjee et al. (2003) consider a
vector of home specific covariates including its age, square feet of living area, other
area, and number of bathrooms.

For now, we don_t consider any dynamic evolution of the model so that the
same model is assumed across the t_s. In other words, let us denote with Yt ¼
ðYtðs1Þ; . . . ;YtðsnÞÞT the vector of observed values at the n locations for each t ¼
1; . . . ;T. Correspondingly, let Xt be the n� p matrix whose i-th column is the vector
xtðsiÞ ¼ ðxt;1ðsiÞ; . . . ; xt;pðsiÞÞT , i ¼ 1; . . . ; n, and �t ¼ ð�tðs1Þ; . . . ; �tðsnÞÞT be the vector
of the spatial components, t ¼ 1; . . . ;T. Then, we assume that Yt given � and �t are
drawn independently from a density f ðYtjXT

t � þ �t; 	
2Þ, usually assumed to be
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Gaussian. The vector of spatial effects �t is a sample from a SDP, such that
�tjGðnÞ 	 GðnÞ. Here GðnÞ is the prior induced from the SDP G. Therefore,
GðnÞ 	 SDPð�G

ðnÞ
0 Þ, with G

ðnÞ
0 being a multivariate normal with mean zero and

covariance matrix �2Hnð�Þ, where ðHnð�ÞÞi;j ¼ ��ðsi; sjÞ is the correlation function,
indexed by some vector of parameters �.

Hence, we can specify the following semiparametric hierarchical model,

Y tj�; �t; 	
2 ind:	 NnðYtjXT

t � þ �t; 	
2InÞ; t ¼ 1; . . . ;T

�tjGðnÞ
i:i:d:	 GðnÞ; t ¼ 1; . . . ;T

GðnÞj �; �2; � 	 DPð�G
ðnÞ
0 Þ; G

ðnÞ
0 ð�j 0n; �

2Hnð�ÞÞ

�; 	2 	 Npð�j�0;S�Þ � IGammað	2j a	 ; b	 Þ

�; �2; � 	 Gammað�j a�; b�Þ � IGammað�2j a�; b�Þ � ½��;

ð12Þ

where we placed appropriate conventional priors on the hyperparameters
�; 	2; �; �2; � and the prior on � is denoted as ½�� by means of the simple brackets
notation in Gelfand and Smith (1990). Notice that such prior depends on the specific
form of ��ð�Þ. Hereafter we consider � belonging to the Matèrn covariance class,
with decay parameter � and smoothness parameter � 2 ð1; 2Þ, i.e., our base process
is exactly once differentiable. Accordingly, a Gamma prior is considered for � and a
uniform on ð1; 2Þ for �.

Since the pure error term is a white noise, hence nowhere differentiable,
inferential interest is on directional finite differences and derivatives of the mean
process defined at the first level of the hierarchy. However, gradients for the mean
surface can be estimated at one of the observed sites, or at a set of entirely new
locations (Bayesian Bkriging’’). Also, we could be interested in the behavior of one
of the available replicates or in prediction for a future realization of the process.
Therefore, in the following discussion, we will comprise all possible cases by sup-
pressing t and writing simply mðsÞ ¼ EðYðsÞjX; �; �Þ ¼ xðsÞT� þ �ðsÞ, where s can
denote an element either in the original set of locations ðs1; . . . ; snÞ or in a new set
ð~s1; . . . ;~smÞ. Notice that, in the second case, we need to know the value of the
covariates at these new locations. In practice, s may be a specified set of surfaces,
e.g., distance to a fixed point or elevation. However, if they are not fully known, we
will need to provide a stochastic model for them, e.g., that the covariate surfaces be
viewed as a realization from a multivariate random field, i.e., the p-dimensional
vector process fxðsÞ; s 2 Dg.

Then, the finite difference and the directional derivative processes of mðsÞ are,
respectively, given by

mu;hðsÞ ¼
EðYðsþ uhÞjX; �; �Þ � EðYðsÞjX; �; �Þ

h

¼ xu;hðsÞT� þ �u;hðsÞ;

ð13Þ

and

DumðsÞ ¼ DuEðYðsÞjX; �; �Þ ¼ DuxðsÞT� þDu�ðsÞ; ð14Þ

for some unit vector u and scalar h. The latter result can be obtained as an L2-limit
for h! 0 of mu;hðsÞ. However, it can also be seen as a special case of a more general
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result provided by Majumdar et al. (2004) for directional derivatives of functional
forms of a random field XðsÞ. Let ZðsÞ ¼ gðXðsÞÞ for some arbitrary functional g.
Then, Majumdar et al. prove that ZðsÞ has directional derivative process given by
DuZðsÞ ¼ g0ðXðsÞÞDuXðsÞ. In other words, this defines a simple chain rule for direc-
tional derivative processes. Of course, if we specify a covariate process, we need to
take into account the distributional assumptions on xðsÞ.

Simulation based model fitting proceeds by marginalizing over the random mix-
ing distribution, resulting in a finite dimensional parameter vector. Gibbs sampling
for the posterior distribution ½�; �; 	2; �; �2; � j data�, where � ¼ð�1; :::; �TÞ and data
= Y1; :::;YTf g is carried over according to one of the standard Pólya urn based al-
gorithms developed by Escobar (1994), Escobar and West (1995) and Bush and
MacEachern (1996). Implementation specific for the semiparameteric hierarchical
model (12) has been described in Gelfand et al. (2005) and will not be detailed here.
We do note that the � are updated using the approach of Bush and MacEachern
(1996). Updating � and 	2 does not involve the DP part of the model resulting
in normal and inverse gamma full conditional distributions, respectively. Lastly,
�2 also has an inverse gamma full conditional, � is handled through a Metropolis
step and � is handled by discretizing the parameter space. The a.s. discreteness
of the realizations from the Dirichlet process implies that there is a positive
probability of clustering in the samples. Let us denote with T* the number of
distinct elements in � and with �* ¼ ð�*1 ; . . . ; �*TÞ the vector that collects only the
distinct �t_s. Notice that we can switch back and forth from � to �*, once we define
a vector of labels w ¼ ðw1; . . . ;wTÞ, such that wt ¼ j if and only if �t ¼ �*j , t ¼
1; . . . ;T. Then, ð�*;wÞ is an equivalent representation of � and posterior draws from
½�; �; 	2; �2; �; �;Yt; t ¼ 1; . . . ;T� are the same as posterior draws from ½�*;w;T*; �;
	2; �2; �; �;Yt; t ¼ 1; . . . ;T�.

A key point to be made is that our proposed gradient analysis is a post-model
fitting activity. Once we have obtained posterior samples, we can study gradients at
any location, in any direction, as many as we wish, using one-for-one sampling with
the posterior output. Hence, the consequential computational demand is in the
model fitting. But again, as noted above, fitting models as in (12) is now fairly
standard. We make the priors fairly noninformative. As long as the number of
sampled locations, n, and the number of replicates, T, are not too small, the MCMC
tends to be well-behaved and there is little prior sensitivity. Run times are roughly
linear in T and quadratic in n. We have used both R code and C++ code, the latter
being typically an order of magnitude faster.

As anticipated, interest is in prediction of the directional finite differences and
derivatives of the mean process mðsÞ at locations where the random field fYðsÞ; s 2
Dg is not observed. Hereafter, we use VuðsÞ to denote either mu;hðsÞ or DumðsÞ. In
obvious notation, we use VX

u ðsÞ and V�
uðsÞ to denote the components in (13) and

(14), writing VuðsÞ ¼ VX
u ðsÞ þ V�

uðsÞ. If we assume independence between the
processes for the covariates and the spatial component, we get

FVu
ðyj dataÞ ¼

Z
FVX

u
ðy� zj dataÞ dFV�

u
ðzj dataÞ;

where Fð�Þ concisely denotes the distribution function of the process. Turning to
densities,

fVu
ðyj dataÞ ¼

Z
fVX

u
ðy� zj dataÞ fV�

u
ðzj dataÞ dz;
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Fig. 2 Histogram and estimated density in two sites, one close to a source (7.11,3.30), one distant
(5.38, 5.02)
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Fig. 3 Finite differences (h ¼ 0:01) at angles 0 and 135, observed at the two locations s*1 ¼ ð3:5; 6:5Þ
(above) and s*2 ¼ ð6:5; 3:5Þ (below)
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from which it follows that we can get samples from the posterior predictive distribution
of VðsÞ via composition sampling. For instance, if xðsÞ is fixed VX

u ðsÞ is a parametric
function of � at each s, immediately sampled given posterior samples for the �_s. Such
samples may be added to associated samples from the posterior predictive of V�

uðsÞ to
obtain samples of VuðsÞ. Hereafter we concentrate only on inference over V�

uðsÞ, which
is equivalent to assume a spatially constant mean structure in (12), so that we can simply
consider VuðsÞ ¼ V�

uðsÞ for notational simplicity. In our simulation example, this
facilitates isolating the contribution of the pure spatial effect to the pattern observed in
the data.

6 Computational Issues

According to the prediction discussion in Gelfand et al. (2005), in principle we can
study the behavior of the gradient process on each of the observed replicates or on a
totally new predictive surface. However, in most applications it is natural to study the
pattern of gradients for one of the available replicates. Such prediction is enhanced by
borrowing strength across all replicates through the nonparametric specification and
enables the possibility of clustering the gradients according to the spatial effect in
place at the moment the observation was collected. Predicting gradients for a new
unobserved surface would not appear to be of much interest. Apart from the mean
structure, any patterns in such gradients would arise by chance, i.e., we would be
seeing a random realization from the posterior gradient process.

Therefore, for t ¼ 1; . . . ;T, let the vectors Vu;t ¼ ðVu;tðs1Þ; . . . ;Vu;tðsnÞÞ and
~
Vu;t ¼ðVu;tð~s1Þ; . . . ;Vu;tð~smÞÞ collect the values of the finite difference or directional
derivative process respectively at old and new locations. We are interested in
predicting ðVu;J ;

~
Vu;JÞ given the data, for some J ¼ 1; . . . ;T.

We recall the equivalence between � and ð�*;wÞ from Section 5. Hence, let
~
�t ¼

ð�tð~s1Þ; . . . ; �tð~smÞÞ denote the vector of spatial component for new locations for
replicate t ¼ 1; . . . ;T. Then,

~
� ¼ ð~�1; . . . ;

~
�TÞ and

~
�* ¼ ð~�1; . . . ;

~
�T*Þ denote the vectors

corresponding to � and �* for the new locations. Notice that, by the nature of the
SDP, each couple ðVu;t;

~
Vu;tÞ captures the gradient associated with the surface where

ð�t;
~
�tÞ belongs. Therefore, given the vector w of configuration indicators, it is

possible to define vectors ðV*u;t;
~
V*u;tÞ corresponding to ð�*t ;

~
�*t Þ, t ¼ 1; . . . ;T*, such

that the joint predictive posterior distribution ½Vu;t;
~
Vu;t; t ¼ 1; . . . ;Tjdata� can be

rewritten as

½Vu;t;
~
Vu;t; t ¼ 1; . . . ;Tj data� ¼

Z
½Vu;t;

~
Vu;t; t ¼ 1; . . . ;Tj �t;

~
�t; t ¼ 1; . . . ;T;  �

� ½�t;
~
�t; t ¼ 1; . . . ;T;  j data�

¼ ½V*u;t;
~
V*u;t;w; t ¼ 1; . . . ;T*j data�

¼
Z YT*

t¼1

½V*u;t;
~
V *u;tj �*

t ;
~
�*

t ; �
2; �; ��

�
YT*

t¼1

½~�*
t j �*

t ; �
2; �; �� ½�*;w;T*;  j data�;

ð15Þ

where  ¼ ð�; 	2; �2; �; �Þ denotes the vector of parameters of the model. We can
sample from (15) via composition sampling. In fact, ½�*;w;T*;  j data� is the output
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Fig. 4 Image plots with contour lines of data generated at the 99th (above) and 100th (below)

replicates
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Fig. 5 Predictive posterior distribution of the directional derivatives at angles 0 and 135 and at sites
s*

1 ¼ ð3:5; 6:5Þ and s*
2 ¼ ð6:5; 3:5Þ for the 99th replicate
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Fig. 6 Predictive posterior distribution of the directional derivatives at angles 0 and 135 and at sites
s*

1 ¼ ð3:5; 6:5Þ and s*
2 ¼ ð6:5; 3:5Þ for the 100th replicate

Methodol Comput Appl Probab (2006) 8: 159–189 179



T
ab

le
1

9
9

th
re

p
li

ca
te

-
g

ra
d

ie
n

ts
a

t
s* 1
¼
ð3
:5
;6
:5
Þ:

th
e

fi
rs

t
co

lu
m

n
sh

o
w

s
th

e
v

a
lu

es
o

f
th

e
fi

n
it

e
d

if
fe

re
n

ce
s

(h
¼

0
:0

1
)

co
m

p
u

te
d

o
n

th
e

g
e

n
e

ra
te

d
d

a
ta

;
th

e

se
co

n
d

co
lu

m
n

sh
o

w
s

th
e

p
o

st
e

ri
o

r
m

e
d

ia
n

a
n

d
p

re
d

ic
ti

v
e

in
te

rv
al

s
fo

r
th

e
d

e
n

si
ty

in
F

ig
3
-a

b
o

v
e

;
a

ll
th

e
o

th
e

r
co

lu
m

n
s

p
ro

v
id

e
th

e
p

o
st

e
ri

o
r

m
e

d
ia

n
s

a
n

d
ð2
:5

%
;9

7
:5

%
Þp

re
d

ic
ti

v
e

in
te

rv
al

s
fo

r
d

ir
e
ct

io
n

a
l

d
e
ri

v
at

iv
e
s

a
n

d
fi

n
it

e
d

if
fe

re
n

ce
s

(h
¼

0
:0

1
;0
:1
;1

)

A
n

gl
e

m
u

,0
.0

1
(s

1*
)

o
b

s.

a
t

9
9

th

Q
u

an
t.

o
f

m
u

,0
.0

1
(s

1*
)

o
b

s.

o
v

e
r

a
ll

re
p

li
c.

P
o

st
e

ri
o

r
p

re
d

ic
ti

v
e

(2
.5

%
,

9
7

.5
%

)

D
u
m

(s
1*
)

m
u

,0
.0

1
(s

1*
)

m
u

,0
.1

(s
1*
)

m
u

,1
(s

1*
)

0
j

2
.8

0
j

0
.7

0(
j

3
.4

5,
0

.6
0)

j
2

.3
1(
j

3
.7

8,
j

0
.8

1
)

j
2

.3
2(
j

3
.7

9,
j

0
.8

8)
j

2
.4

0(
j

3
.7

6
,
j

1
.0

7)
j

2
.3

9
(j

3
.0

1
,
j

1
.7

3)

4
5

0
.6

0
j

0
.1

(0
.6

8
,

0
.7

0)
j

0
.8

7(
j

2
.3

6,
0

.6
2)

j
0

.8
8(
j

2
.3

7,
0

.5
6)

j
1

.0
0(

2
.4

3
,

0
.4

3)
j

1
.7

1
(j

2
.5

3
,

0
.8

2
)

9
0

3
.7

1
0

.6
2(
j

0
.6

1,
3

.6
6)

1
.1

1
(j

0
.5

,
2

.6
5)

1
.0

9(
j

0
.4

9,
2

.6
4

)
1

.0
0(
j

0
.5

,
2

.5
2)

j
0

.2
4

(j
1

.0
1

,
0

.5
8

)

1
3

5
4

.6
4

0
.7

6(
j

0
.5

9,
4

.7
)

2
.4

3
(0

.8
4,

3
.9

)
2

.3
9(

0
.9

3,
3

.9
7)

2
.3

6(
0

.9
4,

3
.8

5)
1

.0
3(

0
.3

5
,

1
.8

3)

1
8

0
2

.8
2

0
.6

6(
j

0
.5

5,
3

.4
8)

2
.3

1
(0

.8
1,

3
.7

8
)

2
.3

0(
0

.8
7,

3
.7

1)
2

.2
1(

0
.9

1,
3

.5
6)

0
.4

3(
j

0
.5

8,
1

.5
1)

2
2

5
j

0
.6

0
0

.0
7(
j

0
.7

3,
0

.6
4)

0
.8

7
(j

0
.6

2
,

2
.3

6
)

0
.8

3(
j

0
.5

7,
2

.3
7

)
0

.7
2(
j

0
.7

1,
2

.1
3)

j
0

.5
8

(j
1

.6
8

,
0

.6
0

)

2
7

0
j

3
.6

4
j

0
.5

6(
j

3
.6

1,
0

.6
2)

j
1

.1
1(
j

2
.6

5,
0

.5
0)

j
1

.1
1(
j

2
.7

0,
0

.4
9)

j
1

.1
8(
j

2
.7

4
,

0
.3

6)
j

1
.5

0
(j

2
.5

7
,
j

0
.3

9)

3
1

5
j

4
.5

6
j

0
.7

3(
j

4
.7

0,
0

.6
0)

j
2

.4
3(
j

3
.9

0,
j

0
.8

4
)

j
2

.4
0(
j

3
.9

4,
j

0
.9

0)
j

2
.4

6(
3

.9
1

,
j

1
.0

2)
j

2
.2

1
(j

3
.0

2
,
j

1
.4

2)

180 Methodol Comput Appl Probab (2006) 8: 159–189



T
a

b
le

2
1

0
0

th
re

p
li

ca
te

-
g

ra
d

ie
n

ts
a

t
s* 2
¼
ð6
:5
;3
:5
Þ:

th
e

fi
rs

t
co

lu
m

n
sh

o
w

s
th

e
v

a
lu

e
s

o
f

th
e

fi
n

it
e

d
if

fe
re

n
ce

s
(h
¼

0
:0

1
)

co
m

p
u

te
d

o
n

th
e

g
e

n
e

ra
te

d
d

a
ta

;
th

e

se
co

n
d

co
lu

m
n

sh
o

w
s

th
e

p
o

st
e

ri
o

r
m

e
d

ia
n

a
n

d
(2

.5
%

,
9

7
.5

%
)

p
re

d
ic

ti
v

e
in

te
rv

a
ls

fo
r

th
e

d
e

n
si

ty
in

F
ig

3
-b

e
lo

w
;

a
ll

th
e

o
th

e
r

co
lu

m
n

s
p

ro
v

id
e

th
e

p
o

st
e

ri
o

r

m
e
d

ia
n

s
a
n

d
(2

.5
%

,
9
7
.5

%
)

p
re

d
ic

ti
v
e

in
te

rv
a
ls

fo
r

d
ir

e
ct

io
n

a
l

d
e
ri

v
a
ti

v
es

a
n

d
fi

n
it

e
d

if
fe

re
n

ce
s

(h
¼

0
:0

1
;0
:1
;1

)

A
n

g
le

m
u

,0
.0

1
(s

2*
)

o
b

s.

a
t

1
0

0
th

Q
u

an
t.

o
f

m
u

,0
.0

1
(s

1*
)

o
b

s.

o
v

er
a

ll
re

p
li

c.

P
o

st
e

ri
o

r
p

re
d

ic
ti

v
e

(2
.5

%
,

9
7

.5
%

)
in

te
rv

a
ls

D
u
m

(s
2*
)

m
u

,0
.0

1
(s

2*
)

m
u

,0
.1

(s
2*
)

m
u

,1
(s

2*
)

0
2

.8
7

2
.4

5
(j

0
.4

3,
3

.4
1

)
2

.7
6

(1
.4

4,
4

.0
8)

2
.7

3
(1

.3
7,

4
.1

7)
2

.7
1

(1
.5

1,
4

.0
9)

0
.8

4
(j

0
.0

8,
1

.8
4)

4
5

j
0

.5
9

j
0

.0
6

(j
0

.7
3

,
0

.5
7)

0
.7

6
(j

0
.8

0,
2

.4
0)

0
.7

3
(j

0
.8

4,
2

.4
9)

0
.6

1
(j

0
.9

1,
2

.2
0)

j
0

.9
0

(j
1

.8
2,

0
.0

4
)

9
0

j
3

.8
2

j
2

.5
8

(j
3

.7
,

0
.5

0)
j

1
.6

8
(j

3
.1

8,
j

0
.1

0
)

j
1

.7
3

(j
3

.2
4,

j
0

.1
4

)
j

1
.8

5
(j

3
.3

0,
j

0
.3

4)
j

2
.0

9
(j

2
.9

4,
j

1
.1

8)

1
3

5
j

4
.8

0
j

3
.6

1
(j

4
.8

4
,

0
.5

6)
j

3
.1

4
(j

4
.3

1,
j

1
.8

9
)

j
3

.1
5

(j
4

.3
7,

j
1

.8
7

)
j

3
.2

(j
4

.3
2

,
j

2
.0

3)
j

2
.4

9
(j

3
.2

0,
j

1
.7

6)

1
8

0
j

2
.9

6
j

2
.4

3
(j

3
.5

1
,

0
.4

4)
j

2
.7

6
(j

4
.3

1,
j

1
.4

4
)

j
2

.7
5

(j
4

.1
9,

j
1

.3
5

)
j

2
.7

4
(j

4
.1

1,
j

1
.4

1)
j

2
.0

9
(j

2
.8

5,
j

1
.3

8)

2
2

5
0

.6
0

0
.0

2
(j

0
.5

7,
0

.6
8

)
j

0
.7

6
(j

2
.4

0,
0

.8
0

)
j

0
.7

4
(j

2
.5

1,
0

.8
5

)
j

0
.8

7
(j

2
.4

7,
0

.6
9

)
j

1
.3

2
(j

2
.3

7,
j

0
.4

4)

2
7

0
3

.7
0

2
.5

1
(j

0
.5

7,
3

.6
6

)
1

.6
8

(0
.1

0
,

3
.1

8)
1

.6
9

(0
.0

8
,

3
.2

0
)

1
.5

2
(j

0
.0

7,
3

,0
0)

j
0

.2
9

(j
1

.4
1,

0
.7

5
)

3
1

5
4

.6
8

3
.6

1
(j

0
.6

2,
4

.8
1

)
3

.1
4

(1
.8

8
,

4
.3

1)
3

.1
4

(1
.8

3,
4

.3
5)

3
.0

6
(1

.9
3,

4
.2

5)
0

.9
3

(j
0

.0
5,

1
.9

)

Methodol Comput Appl Probab (2006) 8: 159–189 181



of the Gibbs sampling procedure described in Gelfand et al. (2005) for model (12).If
the base measure G0 is Gaussian, then also ½V*

u;t;
~
V*

u;tj �*t ;
~
�*t ; �

2; �; �� and
½~�*t j �*t ; �2; �; �� are gaussian. In fact, for any fixed t ¼ 1; . . . ;T*, the joint distribution
½�*t ;

~
�*t ;V*

u;t;
~
V*

u;t� is multivariate gaussian and has been thoroughly described by
Banerjee et al. (2003). Hence, if we are interested in the predictive distribution only
for the new set of locations, we can consider just

½~Vu;t; t ¼ 1; . . . ;Tj data� ¼ ½~V*
u;t; t ¼ 1; . . . ;T*;wj data�

¼
Z YT*

t¼1

½~V*
u;tj �*t ; �2; �; �� ½�*;w;T*;  j data�; ð16Þ

where ½~V*u;tj �*t ; �2; �; �� is again conditionally gaussian.When the base measure of
the SDP is Gaussian an alternative method to obtain samples from ½Vu;t;

~
Vu;t; t ¼

1; . . . ;Tjdata� is the following. Model (12) can be restated so that the conditional
distribution of the observables at the first level of the hierarchy is parametrized by
the vector of spatial gradients instead of the vector of spatial effects. It is sufficient
to replace Ytj�; �t; 	

2 with YtjVu;t;  , where

½YtjVu;t;  � ¼
Z
½Ytj �t; �; 	

2� ½�tjVu;t; �; �; �� t ¼ 1; . . . ;T;

Since ½�t;Vu;tj�; �; �� is gaussian, then ½�tjVu;t; �; �; �� is obtained by usual condi-
tioning and it can be shown that

YtjVu;t;  	 Nn XT� � I þ 1

	2
L

� ��1

L K�1
2 K1Vu;t; 	

2 I þ 1

	2
L

� ��1
 !

where K1 is the matrix of regression coefficients of �t on Vu;t, K2 is the conditional
variance, and L ¼ 1

	2 In þK�1
2

� ��1
(see Harville (1997) and Anderson (2003)). Once

we have reparametrized the model in terms of gradients, we can exploit the fact that
Vu;tðsÞ is a sample from a SDP (see Section 4) and apply the algorithm outlined by
Gelfand et al. (2005) to obtain samples from the posterior distribution ½Vu;t; t ¼
1; . . . ;T;  j data� for old locations. Then, for new locations it is sufficient to consider
the distinct Vu;t_s and the distribution ½~V*

u;t jV*
u;t; �

2; �; ��, for t ¼ 1; . . . ;T*.

7 A Simulation Example

We present a simulation example with the intended purpose of stressing some
features of our model. In particular, we consider a situation where usual Gaussian
modelling is inappropriate. We take advantage of the clustering capability of the
SDP to show the possibility of finding several types of spatial effects using the
independent replicates.

Thus, we consider YðsÞ ¼ ZðsÞ þ eðsÞ, where eðsÞ is a pure error process with
variance 	2 and ZðsÞ denotes a random field with distribution FZð�Þ given by

FZðsÞ ¼ 
FZ1
ðsÞ þ ð1� 
ÞFZ2

ðsÞ;

for some 
 2 ð0; 1Þ, that is, a probability mixture of two independent Gaussian fields
Z1ðsÞ and Z2ðsÞ, with mean EðZiðsÞÞ ¼ �iðsÞ with respective covariance structure
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specified by �2��i
ðs; s0Þ, i ¼ 1; 2. Data are generated so that each replicate could

come from one of the two spatial processes, Z1ðsÞ or Z2ðsÞ.
For example, usually temperature decreases with altitude. However, during the

passage of a cold front or under overnight radiative cooling, temperature inversions
occur and the temperature of the atmosphere increases with altitude. Temperature
inversions are relevant, for example, in studying pollution phenomena, sound
propagation, or thunderstorms. Therefore, it could be appropriate to use a non-
unimodal model to describe the nature of the spatial effects acting at the different
times when we collect data and we might be interested in the directions of the
sharpest temperature gradients. As another example, suppose a signal comes from
different sources, e.g., emission sites, at different times. We may not know either the
locations of the sources or whether the sources are emitting at the time of collection.
Then, we might seek both local intensity of the signal as well as local gradients to
learn about both exposure and the direction of sources relative to the location.
These are all situations where a simple Gaussian assumption for replicates is not
appropriate. Our dataset can be seen as a simplified version of one of these settings.

Let

�iðsÞ ¼ �0i þ �1i e� i jjs�s0ijj2 ; i ¼ 1; 2 ð17Þ

where s01 and s02 are two distinct sources emitting a signal decaying to a long range
mean level �0i (possibly, a mean structure term depending on some covariates) as a
function of the squared distance from the source. Thus, �1i can be interpreted as
coefficient of amplification of the signal and  i is a decay parameter. Then,

EðZðsÞÞ ¼ 
�01 þ ð1� 
Þ�02 þ 
�11 e� 1ðks�s01kÞ þ ð1� 
Þ�12 e� 2ðks�s02kÞ; ð18Þ

and

CovðZðsÞ;Zðs0ÞÞ ¼ 
ð1� 
Þ �1ðs0Þ � �2ðs0Þ½ � �1ðsÞ � �2ðsÞ½ �

þ �2f
��1
ðs; s0Þ þ ð1� 
Þ ��2

ðs; s0Þg:
ð19Þ

The field is observed on a randomly sampled set of points within a 10� 10 square.
In the subsequent illustration, we consider n ¼ 50 sites, which are shown in Fig. 1,
together with the location of the sources s01 ¼ ð3; 7Þ and s02 ¼ ð7; 3Þ (indicated with
?). The maximum observed distance in our generated field is approximately 11:65
units. We consider 18 more points, which are excluded from the monitoring sites
and will be used for validation of spatial prediction. These are the two points s*

1 ¼
ð3:5; 6:5Þ and s*

2 ¼ ð6:5; 3:5Þ (denoted by r in Fig. 1), together with the 8 points
around them, which are positioned along the eight main directions at angles of
0; 45; 90; 135; 180; 225; 270 and 315 degrees and distant h ¼ 0:01 units from the
center.

We assume T ¼ 100 independent observations of the random field YðsÞ specified
above. In particular, we have chosen the following values for the parameters. The
variance of the pure error component is 	2 ¼ 1, while the parameters for ZðsÞ are

 ¼ 0:5, �0i ¼ 2, �1i ¼ 5, i ¼ 1; 2. The value of  ¼ 1 is such that the signal over the
long range mean is expected to become negligible (i.e., �01 expf� jjs� s0ijjg � 0:05)
at points further than 2:15 units from the sources. Here ��ð�Þ is the Matèrn
correlation function with smoothness parameter � ¼ 3=2, so that the covariance is
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given by �2 ð1þ �dÞ expð��dÞ, with �2 ¼ 0:25 and � ¼ 1:5. That value ensures an
effective isotropic range of 3:16 units.

In Fig. 2, we plot the histogram of the replications as well as the estimated density
for two sites, one close to a source, one more distant. It is apparent that in a
neighborhood of the sources, the distribution of the observations is bimodal. In fact,
at each replicate they come from one of two distinct fields according to whether we
sample from Z1 or Z2. At points far from the sources, the signal is negligible relative
to its mean and thus, the density is unimodal and centered around this mean.

Based on observations collected at s*
1 and s*

2 and points around, we can plot the
finite differences mu;hðs*

i Þ ¼ �u;hðs*
i Þ, i ¼ 1; 2 for h ¼ 0:01. In Fig. 3, we show the

distribution of the observed gradients (histograms and density estimates) at angles 0
and 135. It is immediate to see that it is bimodal, again reflecting the data generating
mechanism. Careful analysis of the modes of the distribution also seems to suggest
that, by chance, more of the data come from Z2 rather than Z1.

We suppose that the existence of the sources is unknown and fit the observations
by means of the hierarchical model (12). That is, we assume YðsÞ ¼ �þ �ðsÞ þ eðsÞ,
where � is a constant and the distribution of �ðsÞ is centered around a mean zero
stationary gaussian process, with Matèrn covariance function. The aim is to see if
our model is able to capture the long range mean together with the spatial
component specific to each replicate. In particular, we are interested in the ability to
capture the gradient behavior typical of the spatial component operating at every
single replicate.

We adopt a normal prior for �, � 	 Nð0; 1Þ, an IGð2; 1Þ (mean ¼ 1, infinite
variance) for 	2 and �2, a Gð2; :1Þ prior (mean ¼ 20, variance ¼ 200) for �, and a
uniform prior on ð1; 2Þ for �. After fitting the model, we obtain samples from the
posterior predictive distributions of the gradients for the 99th and 100th replicates.
In particular, we are interested in prediction at points s*

1 and s*
2 , where we can

compare the results either with Fig. 3 or the observed gradients in order to validate
our inference.

In Fig. 4 we consider two exploratory image plots of data generated, respective-
ly, at the 99th and 100th replicate. It is evident that the upper is a sample from Z1

and the lower is from Z2. This conjecture is confirmed by looking at Figs. 5 and 6,
where for both replicates we report the posterior predictive distribution for the
directional derivative in s*

1 and s*
2 at angles 0 and 135. For example, consider the

100th replicate (see Fig. 6). We can see that at site s*
2 there are a significant uphill

gradient moving along the E-W direction and a significant downhill gradient to-
ward S-W. On the other hand, the posterior predictive distributions are centered
around zero in s*

1 , thus suggesting lack of significant gradients along those di-
rections. This conclusion is actually confirmed when we look at all the other
directions, so that we can conclude that s*

1 is located in an essentially flat portion
of the region. Similar arguments can of course be developed to outline the chara-
cteristics of the directional derivative process at s*

1 and s*
2 for the 99th replicate

(Fig. 5).
Tables 1 and 2 provide a summary of the posterior predictive distributions of

directional finite differences (h ¼ 0:01; 0:1 and 1:0) and derivatives at the angles of
0; 45; 90; 135; 180; 225 and 270 degrees. Those are compared with the gradients
computed on the basis of the data generated at sites s*

1 and s*
2 , as specified above.

Even more important, if we refer to Fig. 1, we see that source 1 is northwest of site
s*

1 while source 2 is southeast of site s*
2 . Hence gradients in those directions would
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be expected to be much larger than in say the northeast or southwest directions.
Tables 1 and 2 show the former to be very significant, the latter to be insignificant.

In conclusion, by means of the preceding analysis we are able to detect the
presence of distinct gradient behaviors across the replicates. The usual assumption
of a single Gaussian process for �ðsÞ in (11) would lead to smoothing of the
estimated gradient processes through all the replicates. Such smoothing is also
present in our estimates, but to a lesser degree and only for certain directions,
depending on the number of sites sampled and whether the magnitude of the e_s
hides the gradient behavior of the mean process mðsÞ.

8 Summary and Extensions

Historically, in working with data from a spatial process, interest has focused on
global behavior of the realized surface, e.g., on the estimated mean surface and
associated uncertainty. Recently, there has been increasing interest in the local
behavior of such surfaces, captured through finite differences and infinitesimal
gradients. All of this work has proceeded in the context of Gaussian processes.
Here, we have shed such restriction, working with spatial Dirichlet processes,
processes that are nonGaussian, nonstationary with nonhomogeneous variances.
Understanding smoothness properties and developing gradient theory for surfaces
resulting from sampling such processes requires careful analysis as we have provided
in Section 3. Computation and data analysis to infer about gradient behavior is
demanding as we have illuminated. Future work in this area will lead to the
extension of our results to very recently proposed generalized SDP_s (see Duan et
al., 2005). Other natural extensions include gradient analysis for nonparametric
space-time models and for multivariate models.

1 Appendix

Proof of Proposition 1: The proof follows after noticing that for all s; s0 2 D and
for all A 2 B

GðYðsÞ � Yðs0Þ 2 AÞ ¼
X1

j¼1

pj ��*j ðsÞ��*j ðs0ÞðAÞ; a:s:<P; ð20Þ

that is YðsÞ � Yðs0Þ is a sample from a SDP, with smoothness parameter � and base
measure the distribution of �*1 ðsÞ � �*1 ðs0Þ. Recalling the properties of the DP (see
Proposition 4 (Ferguson, 1973)), we get PðAÞ ¼ EðGðAÞÞ ¼ PG0

ðAÞ, where the
expectation is taken marginalizing with respect to G. Now consider the set Cs0

as
defined in the text.

If GðCs0
Þ ¼ 1 for all G in a set of P-measure one, of course EðGðCs0

ÞÞ ¼ 1 and
from the previous identities we get that G0 is a.s. continuous.

Conversely, if G0 is a.s. continuous, EðGðCs0
ÞÞ ¼ 1. Now, GðCs0

Þ is a random
probability measure when considered as a function of G; therefore, it is
nonnegative. It follows that GðCs0

Þ ¼ 1 a.s. with respect to P. Í

Appendix
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Proof of Proposition 2: For an arbitrary set A 2 B, let PðYðsÞ 2 AjGÞ � GðYðsÞ 2
AÞ be the probability under G that a sample takes values in A at a site s. Then,
consider the set

Ws0
¼ fG : lim

jjs�s0jj!0
PðYðsÞ 2 AjGÞ ¼ PðYðs0Þ 2 AjGÞg;

i.e., the set of the probability measures which are convergent in s0. For any fixed G
in S, we have

lim
jjs�s0jj!0

GðYðsÞ 2 AÞ ¼
X1

j¼1

pj lim
jjs�s0jj!0

�
�*j ðsÞ
ðAÞ

¼
X1

j¼1

pj ��*j ðs0ÞðAÞ ¼ GðYðs0Þ 2 AÞ; a:s:<G0

where the first equality follows easily from the dominated convergence theorem.
Notice that the previous result is obtained regardless of the particular realization of
the vector of weights p ¼ ðp1; p2; . . .Þ. Therefore, we can conclude that S \Ws0

is
indeed of the form S \Ws0

¼ P� E1s0
, where P is the support of the GEM

distribution defined on the weights and Es0
¼ f�*D : limjjs�s0jj!0 �*ðsÞ ¼ �*ðs0Þg. If

we denote with �ðpÞ the distribution of p and exploit the independence structure of
the SDP measure, we get

PðS \Ws0
Þ ¼

Z

P�E1s0

�ðpÞG10 ðd�Þ

¼
Z

P

�ðpÞ
Z

Es0

G0ðd�Þ ¼ 1;

since Es0
has measure 1 w.r.t. G0 by hypothesis. Í

Proof of Proposition 3: Let s0 be an arbitrary point in K and consider a realization
of the random probability measure G. We know that G 2 S with probability 1.
Therefore, for all s 2 D, E½ðYðsÞ � Yðs0ÞÞ2jG� ¼

P1
j¼1 pj ð�*

j ðsÞ ��*
j ðs0ÞÞ2, and we

need to prove that

lim
jjs�s0jj!0

E½ðYðsÞ � Yðs0ÞÞ2jG� ¼ lim
jjs�s0jj!0

X1

j¼1

pj ð�*j ðsÞ � �*j ðs0ÞÞ2 ¼ 0; a:s:<P: ð21Þ

The base measure is almost surely continuous by hypothesis. Therefore, all we have
to prove is the admissibility of the interchange between sum and limit operations in
(21) by Lebesgue dominated convergence theorem. Consider the process
Z ¼ maxs2K j�*ðsÞj. Since G0 is a.s. continuous on the compact K, then Z is a.s.
bounded on K, therefore integrable. Analogously, Z2 ¼ ðmaxs2K �*ðsÞÞ2 is a.s.
bounded and integrable on K. It follows that

EðZ2jGÞ ¼
X1

j¼1

pj ðmax
s2K
j�*

j ðsÞjÞ
2 <1;
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by Theorem 3 in Ferguson (1973). Now consider an arbitrary term in the sum
representation (21). It_s immediate to show that

ð�*
j ðsÞ � �*

j ðs0ÞÞ2 � max
s2K
ð�*

j ðsÞ � �*
j ðs0ÞÞ2 � 4 Z2;

for all j ¼ 1; 2; . . ., by Minkowski inequality. Therefore, any term of the sum (21) is
bounded by the integrable function Z2 and the conditions for the dominated
convergence theorem are satisfied. Í
Proof of Proposition 4: First, notice that gðYðsÞÞ is a sample from a DP, with
parameter � and base measure G

g
0;s, i.e., we can define GsðgÞ ¼

P1
j¼1 pj �gð�*

j ðsÞÞð�Þ
and gðYðsÞÞjGsðgÞ 	 GsðgÞ and GsðgÞ 	 G

g
0;s. By the usual properties of the Dirichlet

process, it follows that if G
g
0;s converges weakly, then also gðYðsÞÞ converges in

distribution (with respect to the collection of Dirichlet measures defined at
each s 2 D). Therefore, all we need to establish is that the limit is indeed a sample
from a DP with parameter � and base measure H0;s0

. In other words, we need to
prove that GsðgÞ converges in distribution to the random probability measure
~
G ¼

P1
j¼1 pj �
iðs0Þð�Þ, where 
iðs0Þi:i:d:	 H0;s0

.
In order to prove this result, we use the characteristic function method illustrated

in Ishwaran and Zarepour (2002).
We start recalling that Sethuraman (1994) proves that G 	 DPð�G0Þ is the

unique solution satisfying the following distributional equation

GD¼ q1 ��*
1
ðsÞ þ ð1� q1ÞG; ð22Þ

where, on the right hand side, q1 has distribution Betað1; �Þ, �*
1
ðsÞ is independent of

q1 and G is independent of ðq1; �*
1
ðsÞÞ.

Now, let  ðt; sÞ ¼ E exp itGðg; sÞf g denote the characteristic function of GsðgÞ. By
(22), it follows that

 ðt; sÞ ¼ E exp it q1 gð�*
1
ðsÞÞ þ ð1� q1ÞGsðgÞ

� 	
 �
 �
: ð23Þ

Analogously, let �ðt; sÞ denote the characteristic function of gð�*
1
ðsÞÞ. Then, we can

exploit the independence relations in order to obtain

 ðt; sÞ ¼ Eq1
�ðt q1; sÞ ðt ð1� q1Þ; sÞf g; ð24Þ

where the expected value is taken with respect to the distribution of q1. Any
characteristic function satisfying (24) must be the characteristic function for GsðgÞ.

Now consider  *ðt; s0Þ ¼ limjjs�s0jj!0  ðt; sÞ; and �*ðt; s0Þ ¼ limjjs�s0jj!0 �ðt; sÞ:
Since gð�*

1
ðsÞÞ converges in distribution to 
ðs0Þ, �*ðt; s0Þ is the characteristic

function of 
ðs0Þ.
Therefore, since j�ðt; sÞj � 1 and j ðt; sÞj � 1, for all s 2 D, we can apply the

bounded convergence theorem in order to get

 *ðt; s0Þ ¼ Eq1
�*ðt q1; s0Þ *ðt ð1� q1Þ; s0Þf g;

which is the characteristic function of
~
G, by the uniqueness of the solution of (24).

Then, we have proved that gðYðsÞÞ converges to a random variable, say Zðs0Þ,
such that Zðs0Þj

~
G 	 ~

G and
~
G 	 DPð�H0;s0

Þ. Í
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Proof of Proposition 5: The proof mimics that of Proposition 3. In fact, let hn; hm >
0 be arbitrary scalars, and s0 2

�
K. Then,

E½ðYu;hn
ðs0Þ � Yu;hm

ðs0ÞÞ2jG � ¼
X1

j¼1

pj �*
u;hn
ðs0Þ � �*

u;hm
ðs0Þ

� �2
a:s:<P: ð25Þ

Since �*
j ðsÞ 2 C1, limhn;hm!0ð�*

u;hn
ðs0Þ � �*

u;hm
ðs0ÞÞ2 ¼ 0 and �*

j ðs0Þ has directional deri-
vative Du�*

j ðs0Þ ¼ uTr�*ðs0Þ. Therefore, Yu;hn
ðs0Þ converges in L2 with respect to G

to a random variable DuYðs0Þ ¼ uTrYðs0Þ, whose distribution is
P1

j¼1 pj �Du�*j ðs0Þð�Þ,
since

lim
hn!0

X1

j¼1

pj �*
u;hn
ðs0Þ � uTr�*ðs0Þ

� �2

¼
X1

j¼1

pj lim
hn!0

�*
u;hn
ðs0Þ � uTr�*ðs0Þ

� �2

;

the interchange between limits and sum being justified by the existence of the direc-
tional derivatives and the continuity hypotheses. Í
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