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In this paper, we consider the problem of modeling a matrix of count data, where

multiple features are observed as counts over a number of samples. Due to the nature

of the data generating mechanism, such data are often characterized by a high number

of zeros and overdispersion. In order to take into account the skewness and hetero-

geneity of the data, some type of normalization and regularization is necessary for

conducting inference on the occurrences of features across samples. We propose a

zero-inflated Poisson mixture modeling framework that incorporates a model-based

normalization through prior distributions with mean constraints, as well as a feature

selection mechanism, which allows us to identify a parsimonious set of discrimina-

tory features, and simultaneously cluster the samples into homogenous groups. We

show how our approach improves on the accuracy of the clustering with respect to

more standard approaches for the analysis of count data, by means of a simulation

study and an application to a bag-of-words benchmark data set, where the features

are represented by the frequencies of occurrence of each word.
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1 INTRODUCTION

Modern data science often involves data sets where the fea-

tures of interest are measured as counts. For example, text

documents are typically summarized by their word frequen-

cies, with the size of the dictionary determining the number

of features (see eg, [2, 26]. In those applications, clustering

and feature selection techniques are often employed to pro-

vide low-dimensional summaries of the data and investigate

the topical content of a text [1, 3]. Similarly, in ecologi-

cal survey data (see eg [22]), species counts are observed

on a relatively large number of sites, with the objective of

characterizing the different ecosystems across the sites. In

biology, sequence data—for example, SAGE data, RNA-Seq

and microbiome data [8, 17, 40]—are represented as a matrix

of short sequence tags (eg taxonomic units in a microbiome

experiment) and corresponding observed reads for several

samples. Investigators are typically interested in discovering

tags whose abundances significantly differ across samples.

One common characteristic of those studies is that the

observed frequency of a feature depends on the sampling

effort, or—for the analysis of text documents—the document

length. This usually results in datasets characterized by 2 dis-

tinctive attributes. On the one hand, the datasets contain a high

percentage of zero counts. A zero count can either indicate

a missing trait in the population or be due to a limited sam-

ple. Furthermore, the datasets are highly variable, both with

respect to the total number of counts per sample and to the

total number of counts per feature. Thus, the observed dis-

tributions of counts are typically skewed and overdispersed,

since a large number of features are recorded at low frequen-

cies whereas a few features are recorded very frequently. The

amount of overdispersion may also vary sample to sample

[28, 59].

In order to take into account the skewness and heterogene-

ity of the data, some type of normalization and regularization

is often necessary for conducting inference on the features’

occurrence rates [4, 5, 51]. For example, [59] proposes a
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Poisson log-linear model, where the Poisson intensities are

robustly estimated after a normalization step which takes into

account the total number of reads observed for each sam-

ple and each feature. More recently, [1] have proposed a

Hierarchical Poisson modeling framework where the word

occurrence rate is moderated by the document’s length, and

a low-dimensional representation of the data is achieved by

means of a set of latent (mixture) components and sparsity

inducing shrinkage priors.

In this paper, we propose a novel regularization approach

for estimating occurrence rates in zero-inflated Poisson mix-

ture models. Zero-inflated Poisson models have often been

employed to fit count data characterized by overdispersion

and a high number of zeros, both in the econometrics and the

statistics literature [13, 14, 37]. Our proposal is characterized

by priors that employ “soft” constraints on expected values

of both samples’ and features’ scaling parameters, in order

to normalize the information content of each sample. This is

in contrast to typical approaches that use “hard” constraints

as data-dependent plug-in estimates based on the observed

counts, see for example [5], [12], [40], [42], and [59],

which a priori condition the inference over unknown param-

eters on the observed counts. Such plug-in estimates can be

regarded as maximum likelihood estimators in multiple-stage

approaches and somewhat akin to Empirical Bayes methods,

therefore relying on implicit assumptions of exchangeabil-

ity of the observations, which may not be always justified

in practice and can introduce bias in the estimation of pos-

terior uncertainties [23, 41]. In addition, “soft” constraints

based on a moderate amount of information have been shown

to produce more flexible and less biased estimates [29]. Our

approach is similar in spirit to the recent proposal by [48],

who impose a stochastic constraint on the quantile func-

tions of infinite mixtures, in order to avoid identifiability

restrictions in Bayesian nonparametric approaches for quan-

tile regression.

We further regularize the estimation problem by allowing

priors that enable feature selection and discriminate samples

into clusters. In the analysis of a text document, for example,

our approach allows to identify a subset of discriminatory

features (words) which are exclusive to particular topics, iden-

tified from clusters of documents, automatically balancing

the influence of frequency and exclusivity of words across

samples by virtue of our model-based inference [1,50]. More

specifically, to achieve feature selection we introduce latent

discriminatory variables, similarly as in [56] and [46], who

proposed the use of latent indicators for variable selection

in the context of finite mixtures of Gaussian distributions.

Samples are then clustered on the basis of the similarity of

the resulting vectors of discriminatory features by means of

an infinite Dirichlet process mixture (DPM). DPMs have been

often employed in Bayesian modeling for clustering purposes,

since they allow to estimate the number of clusters (ie, the

number of mixing components) directly from the data [44].

Alternatively, one could consider a finite mixture model, and

use reversible jump Markov chain Monte Carlo (RJMCMC)

to determine the number of components, at the expense of

increased computational cost [49, 56].

In recent Bayesian nonparametric literature, it has become

common to employ an Indian Buffet Process (IBP) charac-

terization to identify nonzero elements in a general matrix

of n samples × p (latent) features [25]. For example, IBP

Compound Dirichlet process models [58] and Beta-negative

binomial processes [60] have been introduced for the analy-

sis of count data in topic modeling. Differently than those,

the constrained Poisson mixtures (CoPoM) approach we pro-

pose is aimed at normalizing the data through the use of mean

constraints, and clustering the available samples based on the

entire subset of selected observed features, rather than assign-

ing single elements of the n × p matrix to either one of the

mixture components (eg a topic) or none.

By means of a simulation study, we show how our approach

improves on the accuracy of the clustering performance with

respect to more standard approaches for the analysis of count

data. We then present an application to a bag-of-words bench-

mark data set, where the features are represented by the

frequencies of occurrence of each word.

The rest of the paper is organized as follows. In Section

2 we introduce the zero-inflated hierarchical mixture model

and discuss the prior formulations. In Section 3 we briefly

describe the MCMC algorithm and discuss the resulting pos-

terior inference. In Section 4 we illustrate the performance of

our method on simulated data and then present an application

to document clustering, based on a bag-of-words benchmark

data set. Section 5 concludes the paper with a discussion of

the modeling choices, namely the use of a Poisson likelihood

vs alternatives, and with future research directions.

2 ZERO-INFLATED POISSON MIXTURE
MODEL WITH FEATURE SELECTION

We consider a n × p matrix of counts, xij, i = 1,… , n,

j = 1,… , p, observed on a set of p features and n samples.

We assume that a large number of the counts is zero, either

because the feature is truly missing in a subset of the popula-

tion or due to limitations of the sampling effort. Thus, we start

by considering a zero-inflated Poisson mixture model, that is,

a mixture model where we constrain one of the kernels to be

degenerate at zero,

xij ∼ 𝜋 𝛿0(xij) + (1 − 𝜋)∫ Poi(xij; 𝜆)G(d𝜆), (1)

where 𝜋 ∈ [0, 1], Poi(x; 𝜆) denotes a Poisson distribution for

the random variable x, with expectation 𝜆, 𝛿c(⋅) indicates a

point mass distribution on c ∈ R, and G(⋅) denotes a general

mixing distribution, which we use to model the overdisper-

sion of the data. Note that if G(⋅) is Gamma distributed, then

Equation 1 defines a zero-inflated Negative Binomial [14].

Alternatively, we can write Equation 1 also by introducing
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latent indicator variables rij ∼ Bern(𝜋), such that if rij = 1

then xij = 0, whereas if rij = 0 then xij ∼ ∫ Poi(xij; 𝜆)G(d𝜆).

2.1 Feature selection

We envision that only some of the features are relevant to

discriminate the n samples into distinct clusters. In particu-

lar, we postulate the existence of a latent binary vector 𝜸 =
(𝛾1,… , 𝛾p), with 𝛾j = 1 if the counts associated to feature j
are relevant to discriminate among the n samples, and 𝛾j = 0

otherwise. Let p𝛾 =
∑p

j=1
𝛾j denote the number of discrimi-

natory features and, correspondingly, let p − p𝛾 indicate the

number of noninformative features. Our model formulation

assumes that any count, say xij, that maps to a discrimina-

tory feature is drawn from a zero-inflated Poisson distribution

with intensity parameter 𝜆ij, while counts that map to nondis-

criminatory features are drawn from a “null” model, which

can be characterized as a zero-inflated Poisson distribution

with intensity parameter 𝜆0
ij. In other words, our representa-

tion allows for features to be discriminatory, although their

count may be zero in some samples. Conditioning on rij = 0,

we can write our model as follows,

xij|rij = 0, 𝛾j, 𝜆ij
ind∼

{
Poi(xij; 𝜆ij) if 𝛾j = 1

Poi(xij; 𝜆0
ij) if 𝛾j = 0,

(2)

whereas if rij = 1 we assume xij = 0, irrespectively of 𝛾j,

with i = 1,… , n and j = 1,… , p. A common choice for

the prior on the vector 𝜸 is to assume independent Bernoulli

distributions on the individual components, with a common

hyperparameter 𝜔, that is, 𝛾j|𝜔 ∼ Bern(𝜔), which is equiv-

alent to a Binomial prior on the number of discriminatory

features, that is, p𝛾 |𝜔 ∼ Bin(p, 𝜔). The hyperparameter 𝜔

can be elicited as the proportion of features expected a priori

to be in the discriminatory set. This prior assumption can be

further relaxed by formulating a Be(a𝜔, b𝜔) hyperprior on 𝜔,

which leads to a beta-binomial prior for p𝛾 with expectation

p a𝜔∕(a𝜔+b𝜔). A vague prior on 𝜔 can be obtained as in [10]

by imposing the constraint a𝜔 + b𝜔 = 2, corresponding to a

prior effective sample size of 2, with some desirable mean per-

centage of inclusion. Analogously, we assume 𝜋 ∼ Be(a𝜋, b𝜋)
as a prior on the zero-inflation weight.

In order to account for the variability observed across sam-

ples and across features, we further parameterize the intensity

parameters of the Poisson distributions as the multiplicative

effect of 3 random effects: (1) a scaling factor capturing

how the sampling effort affects sample-specific occurrences

across all features, denoted by si; (2) a scaling factor cap-

turing feature-specific levels across all samples, denoted by

gj (eg a common usage preposition in the analysis of text

documents); and (3) a term capturing the occurrence rate for

each count, once all the previous global effects have been

accounted for, denoted by dij. Specifically, we parameterize

the Poisson intensity in Equation 2 as 𝜆ij = si gj dij, if 𝛾j = 1,

whereas we set 𝜆0
ij = sigjd0 if 𝛾j = 0 in the “null” model.

Here, d0 is a parameter capturing homogenous background

noise across samples and features. Since background noise

should be the result of the variability captured by the scal-

ing factors si and gj, and also to ensure the identifiability of

all model parameters, we assume d0 = 1, so that the signifi-

cance of each feature is completely revealed by the values of

the random effects dij across the samples.

Multiplicative characterizations of the Poisson intensity

parameter of model Equation 2 are typical both in the fre-

quentist as well as in the Bayesian literature to account for

latent heterogeneity and overdispersion in count data (eg,

seethe latter for examples of this specification in spatial statis-

tics)[1, 7, 14, 59]. To simplify both the prior specification

and the computational algorithms, it is sometimes convenient

to reparametrize model Equation 2 by using the logarith-

mic transformations 𝜆̃ij = log{𝜆ij}, and, consequently, s̃i =
log{si}, g̃j = log{gj} and d̃ij = log{dij}, such that 𝜆̃ij =
s̃i + g̃j + d̃ij. Under this reparameterization, the base compo-

nent is characterized by d̃0 = 0. In Section 2.2, we describe

a regularizing prior specification for the scaling factors that

allows flexible modeling of count data, and also avoids some

limiting assumptions commonly made when estimating those

models.

2.2 Estimation of scaling factors via mean constraints

In Poisson models with a multiplicative intensity 𝜆ij as

defined in Section 2.1, the inferential interest is often limited

to the estimation of the occurrence rates dij, whereas scal-

ing factors are often normalized in order to regularize the

inferential problem and ensure the identifiability of the rel-

evant parameters dij. One typical choice is to estimate the

scaling factors by means of plug-in estimators based on the

observed counts. For example, in the context of the estima-

tion of RNA-seq abundances, [40], [42], and [59] fix ŝi =∑p
j=1

xij∕
∑n

i=1

∑p
j=1

xij, so that
∑n

i=1 si = 1. Similarly, [5]

propose ŝi = mi∕
∑n

i=1 mi, where mi is the median of the dis-

tribution of the ratios of the counts for observation i to their

geometric mean. As a further example, [12] propose taking

ŝi = qi∕
∑n

i=1 qi, with qi the 75th percentile of the counts for

observation i. Many of the above examples further fix ĝj =∑n
i=1 xij. While convenient, the use of plug-in estimates for

estimating si and gj has noticeable drawbacks, since a priori

they condition the inference over unknown parameters on the

observed data counts. Indeed, such plug-in estimates can be

regarded as maximum likelihood estimators in multiple-stage

approaches and somewhat akin to Empirical Bayes methods,

therefore relying on implicit assumptions of exchangeabil-

ity of the observations, which may not be always justified in

practice and can introduce bias in the estimation of posterior

uncertainties [23, 41].

One of the contributions of this article is to provide an

alternative normalization approach, through the use of pri-

ors for the vectors s = (s1,… , sn) and g = (g1,… , gp), that

respectively capture the sampling and feature heterogeneity in
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the count data, and avoid fixing those values a priori. A simple

choice would be to use conjugate priors, si ∼ Ga(as, bs) and

gj ∼ Ga(ag, bg). However, the Poisson intensity in Equation

2 depends on the product si gj, and further constraints are

necessary to allow identifiability of the parameters and simul-

taneous inference on the occurrence rates dij. In the context of

quantile regression, [48] impose a stochastic constraint on the

quantile functions of infinite mixtures to ensure identifiability

of the parameter estimates. Here, we consider priors on si and

gj that impose normalizing constraints on the expected values,

but still provide a flexible estimate of the posterior densities.

For computational convenience, we consider the logarith-

mic transformation s̃i = log{si} and g̃j = log{gj}, so that

sigj = exp {s̃i + g̃j}. We assume that the priors for s̃i and g̃j
are mixture distributions,

s̃i|⋅ ∼ M∑
m=1

𝜙s
m f s

m(s̃i|⋅), and g̃j|⋅ ∼ L∑
l=1

𝜙
g
l f g

l (g̃j|⋅), (3)

with 0 ≤ 𝜙s
m, 𝜙

g
l ≤ 1,

∑M
m=1 𝜙

s
m =

∑L
l=1 𝜙

g
l = 1, and M,L are

positive integers. The use of mixture distributions allows flex-

ible estimation of the posterior density of s̃i and g̃j. We further

build each mixture so to satisfy the desired constraint, that is,

E[s̃i] = cs and E[g̃j] = cg, where cs and cg are some fixed

values. [31] demonstrates that any distribution with a mean

constraint can be generated by an infinite sum of 2-component

mixture distributions, where the 2-component mixtures are

constrained to the have the required expected value. There-

fore, we assume that each f s
m(⋅) and f g

l (⋅) in (3) are themselves

a 2-component Gaussian mixture, as

f s
m(s̃i|tm, 𝜂m) = tm N(𝜂m, 𝜎

2
s ) + (1 − tm)N

(
cs − tm𝜂m

1 − tm
, 𝜎2

s

)
,

f g
l (g̃j|ql, 𝜇l) = ql N(𝜇l, 𝜎

2
g) + (1 − ql)N

(cg − ql𝜇l

1 − ql
, 𝜎2

g

)
,

(4)

with 0 ≤ tm, ql ≤ 1. It is immediate to check that the densi-

ties in (4) satisfy the desired constraint. Of course, one could

consider other prior formulations satisfying that constraint.

However, the proposed mixture-of-mixtures prior is attractive

because it allows flexibility in the estimation of the unknown

si and gj’s, by spanning a wide class of distributions, for

example, skewed and multimodal densities.

Furthermore, if M = L = ∞, then (3) can be interpreted as

Bayesian nonparametric infinite mixtures. In particular, DPM

models have been extensively used in recent literature for

flexible density estimation, both for continuous and discrete

data (see, eg, [36,55,57]). The Dirichlet process assumes that

the mixing distribution can be written as a discrete random

measure, F(⋅) =
∑∞

k=1 𝜙k 𝛿𝜽∗k (⋅), where the weights 𝜙k are

defined by the [54] stick-breaking construction, ie, 𝜙1 = V1,

𝜙k = Vk
∏k−1

u=1(1 − Vu), Vk ∼ Be(1, 𝛼), k = 1, 2,…, and

the atoms 𝜃∗k ∼ F0, with F0 a baseline parametric model

describing the prior expectation of the Dirichlet process. In

symbols, we write F ∼ DP(𝛼,F0). The concentration (or

mass) parameter 𝛼 provides a measure of the precision of the

random measure around the baseline parametric model (see,

for details on the Dirichlet process, [30, 44]). We note that

theoretical results on large support and consistency of mod-

els based on discrete kernels have not been discussed in the

literature. Indeed, given the discreteness of the support on the

natural numbers, some technical issues make the derivation

of such results more complex than for mixtures of continuous

distributions.

We conclude this section by specifying the distributions

of the hyper-parameters in (4). More specifically, we assume

that the 2 mixtures are characterized by 𝜂m ∼ N(0, 𝜏𝜂), tm ∼
Be(at, bt), and 𝜇l ∼ N(0, 𝜏𝜇), ql ∼ Be(aq, bq), whereas 𝜙s

m
and 𝜙

g
l are obtained according to the stick-breaking construc-

tion. Since the aim of this specification is simply to achieve

an automatic normalization of the scaling factors, we further

assume 𝜎2
s = 𝜎2

g = 1.

2.3 Clustering selected features via DPMs

In the analysis of count data across multiple samples, one

common objective is to characterize and cluster the observed

samples into homogenous groups on the basis of the esti-

mated features’ occurrence rates. In this section we provide

a method for clustering the n samples, based on the set of

selected discriminatory features from Section 2.1. We use the

superscript (𝛾) to index the set of discriminatory features,

characterized by 𝛾j = 1 in (2). Similarly, (𝛾c) indicates the

set of non-discriminatory features, characterized by 𝛾j = 0

and the “null” Poisson distribution with intensity parameter

𝜆0
ij = si gj d0. Thus, each data sample is represented by the

1 × p vector xi⋅ of observations {xij}, with x(𝛾)
i⋅ and x(𝛾c)

i⋅ indi-

cating the subsets of features corresponding to 𝛾j = 1 and

𝛾j = 0, respectively. We assume that samples can be clus-

tered based on the subset of selected features x(𝛾)
i⋅ , by means

of a zero-inflated infinite mixture of Poisson distributed com-

ponents. For that purpose, we introduce an auxiliary set of

clustering allocation variables, z = {z1,… , zn}, defined so

that zi = k if and only if the vector of observations x(𝛾)
i⋅ belongs

to cluster k, for some integer k ≥ 1. Then, we can characterize

the likelihood for the selected features as

x(𝛾)ij |zi = k, rij, si, gj
ind∼ rij 𝛿0(xij) + (1 − rij)Poi(xij; 𝜆∗ijk) (5)

where 𝜆∗ijk = si gj d∗
kj, with d∗

kj ∼ Ga(a, b) being a non-negative

occurrence rate for feature j, common to all non-zero obser-

vations assigned to the kth cluster. We further assume that

each zi ∼
∑∞

k=1 wk 𝛿{k}, where the weights wk are defined

by the [54] stick-breaking construction, so that (5) effectively

defines a zero-inflated conjugate DPM model. This modeling

framework allows us to cluster the samples based on the vec-

tors of selected features, by allowing dij = d∗
jk when rij = 0,

for some integer k, while at the same time the number of

clusters is estimated as a by-product of the usual posterior

inference. The dimension of the component-specific vector
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FIGURE 1 Hierarchical formulation of the proposed constrained Poisson mixture (CoPoM) model

d∗
k
(𝛾) = {d∗

k1
,… , d∗

kp𝛾
} depends on the outcome of the feature

selection procedure. As a matter of fact, the joint prior prob-

ability of a given allocation of the n samples into K groups is

given by

p(z1,… , zn) =
𝛼K Γ(𝛼)

∏K
k=1 Γ(nk)

Γ(𝛼 + n)
, (6)

that describes the Ewens distribution [6,18,21]. Here, 𝛼 is the

concentration parameter of the DPM model, which defines the

expected number of clusters as E(k) ≈ 𝛼 log(n) [6]. As 𝛼 → 0,

the number of clusters goes to 1, while for 𝛼 → ∞ the number

of clusters goes to n. We complete our prior specification by

placing a Ga(a𝛼, b𝛼) hyperprior on 𝛼 as in [20]. In the absence

of prior information, we suggest choosing the values of a𝛼 and

b𝛼 to obtain a fair degree of support for 𝛼 ≈ 1.

The proposed model is summarized in Figure 1. Our

zero-inflated Poisson mixture model provides a more flexible

framework for density estimation of overdispersed count data

with respect to widely used Negative Binomial models, which

are indeed a special case of our framework.

3 MODEL FITTING

We now briefly describe the MCMC algorithm for posterior

inference. Our inferential strategy allows to simultaneously

infer group structure in the samples while identifying the

discriminatory features.

3.1 MCMC algorithm

Our primary interest lies in the identification of the dis-

criminatory features, via the vector 𝜸, and the estimation of

the sample clustering allocations, via the vector z. For this,

we design a Markov chain Monte Carlo (MCMC) algorithm

based on Metropolis search variable selection algorithms
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[11, 24] and Gibbs sampling methods for DPM models [45].

We also sample the sample-specific and feature-specific scal-

ing factors, s and g. We give full details of our MCMC

algorithm in the Appendix A and report here a brief descrip-

tion of the most relevant updates.

Update of 𝜸: This is done via an add-delete-swap
algorithm. In this approach, a new candidate vector, say 𝜸new,

is generated by randomly choosing between 2 types of moves.

For the add/delete move, we select at random one of the ele-

ments in the current vector, say 𝜸(old), and change its value

from 0 to 1, or vice versa. For the swap move, we select 2

elements in 𝜸old with different inclusion status and swap their

values. Then, the Metropolis-Hastings ratio can be written as

mMH =
p(𝜸new|z, s̃, g̃,R,X)
p(𝜸old|z, s̃, g̃,R,X)

J(𝜸old|𝜸new)
J(𝜸new|𝜸old)

,

where J(⋅|⋅) indicates the proposal probability distribution

for the selected move. The move is accepted with probabil-

ity min(1,mMH). We should notice that the feature selection

and the cluster structure are determined simultaneously in

the MCMC algorithm. Therefore, to improve mixing, it is

necessary to allow the selection to stabilize for any visited

cluster configuration. As suggested in [34], we repeat the

above Metropolis step E = 20 times within each iteration. In

the applications of this paper, no improvement in the MCMC

performance was noticed beyond this value.

Update of z: Since we have assumed a conjugate base-

line parametric distribution,
∏

{j∶𝛾j=1} Ga(a, b), we can inte-

grate analytically over the cluster-specific parameters d∗
k
(𝛾)

and directly sample the cluster assignment indicators of the

selected features, z, according to Algorithm 3 of [45]. More

specifically, the Gibbs sampler iteratively samples the full

conditionals,

p(zi|z−i, 𝜸, s̃, g̃,R,X)

=
⎧⎪⎨⎪⎩

nk,−i

n−1+𝛼
f (xi⋅|zi = k, z−i, 𝜸, s̃, g̃,R,X−i⋅)

for zi = k, k = 1,… ,K−i,
𝛼

n−1+𝛼
f (xi⋅|𝜸, s̃i, g̃, ri⋅) for zi = K−i + 1,

(7)

where z−i denotes all the elements in z excluding the ith one,

nk,−i is the size of cluster k in z−i, and K−i is the number of

unique values in z−i. Note that f (xi⋅|zi = k, z−i, 𝜸, s̃, g̃,R,X−i⋅)
is the integrated likelihood, with updated d∗

k
(𝛾) based on its

prior and all observations except the ith one. See details in the

Appendix A.

Update of s and g: The prior distribution for the scal-

ing factors s and g is a DPM on the log-transformed values

s̃ and g̃. Since the mixture of log-normal distribution that

we have assumed as baseline measure in the Dirichlet pro-

cess is not conjugate to the Poisson likelihood, we consider a

finite truncation of the Dirichlet process, so that M and L in

Equation 3 are large but finite [33]. Such a choice allows to

simplify computations considerably, and still achieves flexi-

ble estimate of posterior densities, such as those commonly

obtained in a Bayesian nonparametric framework. We employ

Metropolis-Hastings steps for all s̃i’s and g̃j’s.

Update of R: The full conditional for the zero-inflation

latent indicators takes into account that we only need to update

those rij’s that correspond to zero counts. For positive counts,

necessarily rij = 0. We use a Metropolis-Hasting within Gibbs

sampling step for updating rij and 𝜋, after sampling d∗
kj for

those features corresponding to 𝛾j = 0. Details are given in

the Appendix A.

3.2 Posterior inference

We obtain posterior inference on the parameters by postpro-

cessing of the MCMC samples after burn-in. We start by

obtaining a probabilistic assessment of the cluster allocations

by analyzing the MCMC samples of z. One way to summarize

the posterior distribution of z is via the maximum-a-posteriori
(MAP) estimate that can be calculated as

ẑMAP = argmax
1≤b≤B

p(z(b)|𝜸(b), s̃(b), g̃(b),R(b),X)

= argmax
1≤b≤B

p(z)
n∏

i=1

f

×(xi⋅|z(b)i , z
(b)
−i , 𝜸

(b), s̃(b), g̃(b),R(b),X−i⋅),

with b = 1,… ,B indicating the MCMC iterations, after

burn-in, and where the marginal posterior probability that

sample i is allocated to cluster k can be calculated through

Equation 7. An alternative estimate relies on the compu-

tation of a matrix of posterior pairwise probabilities of

co-clustering, that is, the probabilities that observation i and

observation i′ are assigned to the same cluster, pii′ = p(zi =
zi′ |𝜸, s̃, g̃,R,X), as suggested by [19], among others. These

probabilities can be estimated by computing empirical fre-

quencies of co-clustering based on the MCMC samples,

resulting in an n × n symmetric pairwise probability matrix

(PPM). Then, a point estimate for the cluster memberships,

ẑPPM, is obtained by minimizing the sum of squared deviations

of its association matrix from the PPM, that is,

ẑPPM = argmin
z

∑
i<i′

[
I(zi = zi′ ) − pii′

]2
.

As for feature selection, the MAP estimate of 𝜸 can be

obtained by enumerating all visited MCMC samples 𝜸(b) and

then considering the set of features that maximizes the pos-

terior density. Alternatively, we can estimate the marginal

posterior probability of inclusion (PPI) of single features as

the proportion of MCMC iterations, after burn-in, in which

the corresponding 𝛾j were equal to 1, that is PPI(j) =∑B
u=1(𝛾

(b)
j |z(b), s̃(b), g̃(b)

j , r
(b)
⋅j , x⋅j)∕B. A point estimate of 𝜸 is

then obtained by identifying those PPI values that exceed a

given threshold. The optimal threshold is typically chosen

based on a decision theoretic criterion, for example, to maxi-

mize power under a constraint on the number of false positives

[27, 43].
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4 APPLICATIONS

We first explore performances on simulated data and then

show results on a bag-of-words benchmark data set. We also

demonstrate the superiority of our CoPoM model over other

widely adopted methods for the analysis of overdispersed

count data.

4.1 Simulation study

Data were generated with n = 30 samples and K = 3 clusters.

We then simulated observations from a zero-inflated mixture

of Poisson distributions, assuming 3 mixture components and

p𝛾 = 50 discriminating features,

xij ∼ 0.25 𝛿0(xij) + 0.75
{

I(1 ≤ i ≤ 6)Poi(sigjd∗
1j)

+ I(7 ≤ i ≤ 21)Poi(sigjd∗
2j)

+ I(22 ≤ i ≤ 30)Poi(sigjd∗
3j)
}
,

where the first 6 observations were drawn from the first dis-

tribution, the next 15 from the second and the last 9 from

the third distribution. We added 950 noisy features, which

we generated from a zero-inflated Poisson model, xij ∼
0.25 𝛿0(xij) + 0.75 Poi(sigj). We simulated the si’s as indepen-

dent and identically distributed si ∼ U(0.5, 1.5) and the gj’s

as gj ∼ Exp(1∕3). For the mixture components, we simulated

d̃∗
kj, k = 1, 2, 3 from a standard Normal distribution N(0, 𝜎2)

with 𝜎2 = 1.

As for hyperparameter settings, we used the following

default settings. We set the hyperparameters that control the

base distribution of the mixture DP prior to a = b = 1, which

leads to a Gamma distribution with mean and variance equal

to 1, and a𝛼 = b𝛼 = 1, setting the expectation and variance of

the concentration parameter 𝛼 to 1. As for the Beta prior on

the feature selection parameter 𝜔, we set a𝜔 = 0.2, b𝜔 = 1.8,

resulting in the proportion of features expected a-priori to dis-

criminate the different groups to be a𝜔∕(a𝜔 + b𝜔) = 10%.

For the priors on s̃i’s and g̃j’s, we use the following default

settings: M = n∕2 = 15,L = p∕2 = 500, cs = cg = 0,

𝜎s = 𝜎g = 1, 𝜏𝜂 = 𝜏𝜇 = 1, am = bm = 1, al = bl = 1,

at = bt = 1, and aq = bq = 1. Results we report below were

obtained by running one MCMC chain with 10 000 iteration,

discarding the first 1000 as burn-in. We started the chain from

a model with 2 randomly chosen 𝛾j’s set to 1 and with each

observation assigned to a different cluster.

We first describe posterior inference on the relevant param-

eters as a result of our normalization and regularization

approach. Figure 2 shows the heatmap of the pairwise pos-

terior probabilities, p(zi = zi′ |𝜸, s̃, g̃,R,X), of allocating

observations i and i′ to the same cluster, after burn-in. It is

evident from the map that the inspection of the highest pos-

terior allocation probabilities allows to reconstruct the true

allocation structure quite well.

As for the feature selection, Figure 3 shows the marginal

PPI of each feature p(𝛾j = 1|z, s̃, gj, r⋅j, x⋅j), after burn-in. The

FIGURE 2 Simulation study: Heatmap of the pairwise posterior

probabilities p(zi = zi′ |⋅)
red dots indicate the truly discriminatory features. A thresh-

old of 0.5 on the marginal probabilities results in a median

model that includes 18 features, all of which are included in

the set of discriminatory features used in the data genera-

tion process. Figure 4 shows the estimated marginal posterior

distribution of the parameter dij, for 2 of the discriminating

features. These were obtained by post-MCMC compositional

sampling of the parameters as in [28]. Notice that the dis-

tributions are skewed, with high probability mass on low

counts and small mass on extreme values, confirming that

our modeling approach is able to capture the overdispersion

characterizing the simulated data.

In order to further quantify the accuracy of our algorithm,

and to compare its performances with other methods available

in the literature, we looked at results under different scenarios

in terms of sample size, n, number of noisy features, p−p𝛾 , and

cluster dispersion, 𝜎. In particular, we considered 𝜎2 = 1, 0.5,

n = 21, 99 (equally distributed among the K = 3 mixture

components) and p = 200, 1000 (with p𝛾 = 50 discriminat-

ing features). For each of these 2 × 2 × 2 = 8 scenarios, we

simulated 50 data sets and ran our MCMC algorithm with the

default settings describe above and ran our MCMC algorithm

with the default settings described above.

For the analysis of the clustering results, we quantified per-

formance via the (ARI; [32]), a variant of the Rand index

[47], on the basis of the vector of point estimates ẑPPM =
(ẑPPM

1
,… , ẑPPM

n ). Let A =
∑

i>i′ I(zi = zi′ )I(ẑPPM
i = ẑPPM

i′ ) be

the number of pairs of observations that belong to the same

group in both the true clustering and the estimated one; B =∑
i>i′ I(zi = zi′ )I(ẑPPM

i ≠ ẑPPM
i′ ) be the number of pairs which

belong to the same group in the true clustering but different

groups in the estimated one; C =
∑

i>i′ I(zi ≠ zi′ )I(ẑPPM
i =

ẑPPM
i′ ) be the number of pairs in different groups in the true

partition but assigned to the same group in the estimated one;

D =
∑

i>i′ I(zi ≠ zi′ )I(ẑPPM
i ≠ ẑPPM

i′ ), the number of pairs
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FIGURE 3 Simulation study: Marginal posterior probabilities of inclusion p(𝛾j = 1|⋅), with the red dots indicating the truly discriminatory features

FIGURE 4 Simulation study: Estimated marginal posterior distribution of

E[dij] for 2 of the discriminatory features, obtained by post-MCMC

compositional sampling. The distributions are skewed, with high

probability mass on low counts and small mass on extreme values,

capturing the overdispersion of the simulated data

assigned to different groups in both the truth and the estimate.

Then the Rand index (RI) is defined as

RI = A + D
A + B + C + D

,

and the ARI as

ARI =

(
n
2

)
(A + D) − [(A + B)(A + C) + (C + D)(B + D)](
n
2

)2

− [(A + B)(A + C) + (C + D)(B + D)]
.

The RI yields values between 0 and 1, while the ARI can

yield negative values [53]. The larger the index, the more

accurate the clustering result.

For comparison, we selected 2 commonly employed esti-

mation methods for count data, based on Poisson mixtures

and implemented in the freely available R packages edgeR

[52] and PoiClaClu [59]. Both edgeR and PoiClaClu incor-

porate plug-in estimates of scaling factors for normalization

purposes: edgeR considers a negative binomial likelihood,

whereas PoiClaClu aims at clustering count data by using a

regularized Poisson log-linear model. Unlike our modeling

approach, which allows to directly estimate the cluster assign-

ments, through the latent ẑ, those methods do not provide

individual allocation estimates, but rather yield a dissimilar-

ity matrix that can be transformed into a tree via hierarchical

clustering. In order to make the comparison with our CoPoM

model feasible, we considered those estimates that achieved

the maximum ARI values. Table 1 reports results on clus-

tering performances of all methods in terms of ARI values,

averaged over the 50 replicates, under the different simulated

scenarios. For our method, we report the results obtained by

using the PPM estimates for cluster allocation. The MAP esti-

mates performed similarly (not shown). In all replicates and

scenarios considered, we generated data from a zero-inflated

Poisson model, fixing 𝜋 = 0.25. The percentage of observed

zeros was around 44%. Results show that CoPoM consistently

outperforms competing methods in terms of clustering accu-

racy. This is to be expected, since the competing methods do

not incorporate the variable selection, and one might expect

the inclusion of noisy features to mask the recovery of the

true clustering structure. Table 2 shows the performances of

our algorithm when data were generated from a Poisson mix-

ture with 3 components (ie, 𝜋 = 0). Also in this setting, our

zero-inflated Poisson model performs favorably or similarly

with respect to the other methods in all cases. The widely used

edgeR method shows the worst performances, especially for

weakening signal strength, that is, decreasing 𝜎 or increasing

p, whereas our CoPoM method and PoiClaClu show the best

performances.

Since our CoPoM model also allows the selection of a sub-

set of discriminatory features, we quantified its performances

in terms of averaged false positive rate (FPR) and true positive
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TABLE 1 Simulation study with data from a zero-inflated Poisson mixture: Adjusted Rand index (ARI) values, averaged over 50 replicates, achieved by
the R packages edgeR, PoiClaClu and by our CoPoM method under different simulated scenarios. Standard deviations are indicated in parentheses

Scenario Competing methods

n p 𝝈2 edgeR PoiClaClu CoPoM (PPM)

99 200 1.00 0.412 (0.129) 0.550 (0.162) 0.894 (0.129)

99 200 0.50 0.257 (0.100) 0.227 (0.095) 0.895 (0.116)

99 1000 1.00 0.307 (0.125) 0.179 (0.107) 0.925 (0.122)

99 1000 0.50 0.127 (0.103) 0.043 (0.029) 0.907 (0.106)

21 200 1.00 0.492 (0.194) 0.516 (0.210) 0.788 (0.120)

21 200 0.50 0.287 (0.155) 0.280 (0.169) 0.744 (0.128)

21 1000 1.00 0.240 (0.131) 0.134 (0.107) 0.716 (0.081)

21 1000 0.50 0.135 (0.095) 0.101 (0.068) 0.670 (0.130)

TABLE 2 Simulation study with data from a Poisson mixture: Adjusted Rand index (ARI) values, averaged over 50 replicates, achieved by the R
packages edgeR, PoiClaClu and by our CoPoM method under different simulated scenarios. Standard deviations are indicated in parentheses

Scenario Competing methods

n p 𝝈2 edgeR PoiClaClu CoPoM (PPM)

99 200 1.00 0.590 (0.133) 1.000 (0.000) 1.000 (0.000)

99 200 0.50 0.437 (0.106) 0.998 (0.007) 1.000 (0.000)

99 1000 1.00 0.394 (0.111) 0.999 (0.006) 1.000 (0.000)

99 1000 0.50 0.232 (0.082) 0.947 (0.067) 0.991 (0.061)

21 200 1.00 0.701 (0.167) 1.000 (0.000) 1.000 (0.000)

21 200 0.50 0.556 (0.138) 0.983 (0.059) 0.997 (0.021)

21 1000 1.00 0.477 (0.143) 0.987 (0.058) 1.000 (0.000)

21 1000 0.50 0.312 (0.150) 0.863 (0.190) 1.000 (0.000)

TABLE 3 Simulation study: Average false-positive rates (FPRs), true positive rates (TPRs), and areas under ROC curves (AUCs), achieved by the
CoPoM model under different simulated scenarios, for different values of the threshold, 𝜏, on the PPIs

CoPoM (PPI)

Scenario 𝝉 = 0.2 𝝉 = 0.4 𝝉 = 0.6 𝝉 = 0.8

n p 𝝈2 FPR TPR FPR TPR FPR TPR FPR TPR AUC

99 200 1.00 0.075 0.888 0.019 0.827 0.005 0.790 0.001 0.743 0.964

99 200 0.50 0.057 0.803 0.014 0.724 0.004 0.667 0.001 0.603 0.936

99 1000 1.00 0.008 0.803 0.002 0.760 0.001 0.724 0.000 0.667 0.961

99 1000 0.50 0.006 0.677 0.001 0.625 0.000 0.580 0.000 0.514 0.929

21 200 1.00 0.354 0.872 0.110 0.700 0.033 0.576 0.008 0.474 0.881

21 200 0.50 0.269 0.706 0.073 0.505 0.020 0.389 0.005 0.305 0.806

21 1000 1.00 0.054 0.579 0.014 0.476 0.004 0.414 0.001 0.350 0.855

21 1000 0.50 0.044 0.431 0.011 0.327 0.003 0.266 0.001 0.216 0.793

rate (TPR) achieved under the different simulated scenarios,

for different values of the threshold on the PPIs. Results are

shown in Table 3, and the corresponding receiver operating

characteristic (ROC) curves are shown in Figure 5. Each sub-

figure, corresponding to different values of n and p, shows

that the estimate becomes more accurate with increasing sep-

aration between the clusters, captured by the between-cluster

variability parameter 𝜎.

Unlike the edgeR and PoiClaClu methods, which use

plug-in estimates, our model formulation is characterized by

priors on the samples’ and features’ scaling parameters that

impose soft constraints on the expected values. To appreciate

the effect of such prior formulation, we looked at the fre-

quentist coverages of our estimates and compared those to an

implementation of our model that employs simple conjugate

Gamma priors on the si’s and gj’s parameters. For example,

for the scenario with n = 21, p = 200, 𝜎2 = 1, the average fre-

quentist coverages of the 95% credible intervals obtained with

our model with constrained priors, calculated over 100 sim-

ulated datasets, were .91, .92, .92, for the si’s, gj’s and sigj’s

parameters, respectively, while those obtained with uncon-

strained Gamma priors were 0, .001, .8, for the si’s, gj’s and

sigj’s parameters, respectively.

We conclude this section by conducting a sensitivity anal-

ysis on the prior specification of our method and reporting

results for different hyperparameter values of the priors for
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FIGURE 5 Simulation study: Receiver operating characteristic (ROC) curves, for different values of the threshold on the PPIs, obtained by CoPoM under

different simulated scenarios. The bold curve corresponds to 𝜎2 = 1, whereas the dashed curve corresponds to 𝜎2 = 0.5

𝜔 and 𝛼. In particular, we considered 4 scenarios: (a𝜔 =
0.02, b𝜔 = 1.98), (a𝜔 = 1, b𝜔 = 1), (a𝛼 = 1, b𝛼 = 10), and

(a𝛼 = 1, b𝛼 = 0.1), while setting all the other hyperparame-

ter to default values. Table 4 shows that clustering and feature

selection performance, in terms of the ARI and the AUC, are

fairly robust to the choice of the hyperparameters. When no

prior information is available, we suggest to use the default

choice a𝜔 = 2pprior∕p, b𝜔 = 2 − a𝜔, and a𝛼 = b𝛼 = 1.

4.2 Application to the analysis of bag-of-words data

Bag-of-words data sets report the frequencies of occurrence of

each word in a text document. Clustering of documents on the

TABLE 4 Simulation study: Sensitivity analysis on the values of the
hyperparameters of the priors on 𝛼 and 𝜋

Scenario Performance
a𝝎 b𝝎 a𝜶 b𝜶 ARI AUC

0.02 1.98 1.00 1.00 0.498 0.879

0.20 1.80 1.00 0.10 0.384 0.864

0.20 1.80 1.00 1.00 0.562 0.846

0.20 1.80 1.00 10.0 0.370 0.833

1.00 1.00 1.00 1.00 0.452 0.869

basis of a subset of relevant words is one of the most common

tasks when analyzing bag-of-words data. Here we illustrate

the performance of the CoPoM approach using the widely
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FIGURE 6 Brown Corpus data set: (A) trace plot of the number of clusters K; (B) histogram of the number of clusters K; (C) trace plot of the number of

selected variables p𝛾 ; (D) marginal posterior probabilities of inclusion p(𝛾j = 1|⋅), with the red dots indicating the truly discriminatory features

FIGURE 7 Brown Corpus data set: Heatmap of the pairwise posterior

probabilities p(zi = zi′ |⋅)
employed Brown Corpus [35]. In linguistics, a corpus defines

a large and structured collection of texts, which are often used

for conducting statistical analyses and tests of hypotheses

about a linguistic variety or particular characteristics of a

language. The Brown Corpus consists of 500 samples, dis-

tributed across 15 genres. Each sample begins at a random

sentence-boundary in the article and continues up to the first

sentence boundary after 2000 words. The total vocabulary is

about 50 000 words and half of them occur equal or less than

once in the corpus. Thus, the data are typically characterized

by an excessive number of zeros and overdispersion.

For the application of this paper, we selected a subset of

the Brown Corpus, composed of 5 sports reportage, 3 society

reportage, 7 spot news, and 7 editorials, whose length range

from 2200 to 2374 words, for a total of 22 texts and 8826

features. The data are quite sparse, as about 90% of the counts

are zero.

We report results obtained by running the MCMC

algorithm described in Section 3.1 with the same default set-

tings used in the simulations. Figures 6A and B shows the

posterior inference on the number of clusters, more specif-

ically the MCMC trace plot across iterations (A) and the

resulting estimate of the posterior distribution of K, after

burn-in (B). Figures 6C and D reports the results of the feature

selection. More specifically, Figure 6C reports the trace plot

for the total number of included features, whereas Figure 6D

shows the estimated marginal PPIs of each single feature,

p(𝛾j = 1|z, s̃, gj, r⋅j, x⋅j), after burn-in. A threshold of 0.5

on the marginal probabilities results in a median model that

includes 203 features (2.3% of the total). Finally, Figure 7

shows the heatmap of the pairwise posterior probabilities of

co-clustering, p(zi = zi′ |𝜸, s̃, g̃,R,X). Table 5 summarizes the

posterior sample allocations ẑ, based on the PPM estimate,

and the corresponding ARI value. Our results suggest that the

proposed CoPoM model is able to roughly recover distinctive

features of the 4 broad categories.

For comparison, we already pointed out that the R packages

edgeR and PoiClaClu do not provide a single point estimate,

ẑ, but yield a dissimilarity matrix that can be used as input

in a hierarchical clustering algorithm. Within our approach,

the squared Euclidean distance between each pair of observa-

tions, based on the selected subset of discriminatory features,

can be defined as

d(x(𝛾)
i⋅ , x

(𝛾)
i′⋅ ) =

√√√√ ∑
{j∶𝛾j=1}

(
d∗

zij
− d∗

z′i j

)2

,

TABLE 5 Brown Corpus data set: Point estimate ẑPPM of cluster membership obtained from the pairwise probability matrix of co-clustering. See Section
3.2 for details

Sports Society Spot news Editoral ARI

ẑPPM 1 1 1 1 1 2 2 2 3 3 4 4 5 3 5 6 6 6 6 6 6 6 0.788
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FIGURE 8 Bag-of-words data: The hierarchical clustering dendrograms using the Euclidean distance measure and the complete agglomeration method

achieved by the CoPoM model, PoiClaClu and edgeR, respectively

and an estimate of d∗
kj can be computed as

d̂∗
kj =

∑
{i∶ẑi=k,rij=0} xij

ĝj
∑

{i∶ẑi=k,rij=0} ŝi
,

with ẑPPM and ŝ and ĝ the MAP estimates of the parame-

ters. Note that the distance between each pair of observations

within the same cluster is zero. Figure 8 shows the

dendrogram of the hierarchical cluster analysis for the

CoPoM model and the 2 R packages edgeR and PoiClaClu

[59], employing the Euclidean distance and the complete

agglomeration method. Our CoPoM model and Witten’s

methods appear to be the most efficient to separate the

4 genres.
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5 DISCUSSION

In this paper, we have introduced a zero-inflated CoPoM

model for the analysis of count data, where multiple features

are observed as counts over a number of samples. We assume

that the data are characterized by an excessive number of

zeros and by overdispersion, that is a large number of fea-

tures do not get frequently observed, whereas a few features

are characterized by large occurrence rates in 1 or more sam-

ples. We assume that the amount of overdispersion may also

vary from sample to sample. Our CoPoM approach proposes

to regularize the estimation of the feature occurrence rates

by means of a model-based normalization approach, which

employs prior distributions with mean constraints on some of

the model parameters. It also incorporates a feature selection

mechanism, for the simultaneous identification of a parsimo-

nious set of discriminatory features and group structures in

the samples.

When applied to simulated data, the CoPoM model has

shown improved accuracy of the clustering performance with

respect to more standard approaches. We have also presented

an application to a bag-of-words benchmark data set, where

the data matrix is represented by the frequencies of word

occurrences in multiple documents. We have shown the good

performance of our Poisson mixture model with mean con-

straints in terms of feature selection and the clustering of the

samples into larger topical groups.

Our modeling framework enables discrimination of sam-

ples based on a subset of selected features. Alternative feature

selection approaches are often used to describe overlapping

clustering of (latent) features across samples, [9,38,39], with

resulting post hoc interpretation of the subset of nonexclu-

sive pairings. Furthermore, several models have been pro-

posed recently for the analysis of overdispersed count data

as an alternative to Poisson mixtures. For example, in the

Bayesian nonparametric literature, rounded Gaussian kernel

models have been introduced as a more flexible and robust

choice for analyzing both underdispersed and overdispersed

count data [15, 16]. To date rounded Gaussian kernel meth-

ods have been developed mostly for density estimation. In

our article, instead, we are concerned with the estimation

and comparison of features’ occurrence rates across multiple

samples, and feature selection, which require some degree of

regularization due to the nature of the data generating mech-

anism. Future work will aim at exploring how our inferential

aims can be comprised into the domain of those more recent

approaches.

Although here we have focused on the analysis of text

documents, our methodology is quite general. In particu-

lar, the class of prior distributions with mean constraints

that we propose can be successfully employed on other

types of high-dimensional count data sets, such as those

encountered in ecology, genomics and spatial statistics,

where the normalization of Poisson intensities is commonly

employed to account for the overdispersion and heterogeneity

observed across samples and across features. Future work

will explore how the approaches presented here can be

extended to the analysis of multivariate vectors of depen-

dent count data, observed spatially or longitudinally in

time.
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APPENDIX A: DETAILS OF THE MCMC
ALGORITHM

We start by writing the marginal likelihood for each sample i,
i = 1,… , n, after integrating out the parameters d∗

kj.

f (xi⋅|𝜸, s̃i, g̃, ri⋅)

= ∫ f (xi⋅|zi = k, 𝜸,d∗
k⋅, s̃i, g̃, ri⋅)p(d∗

k⋅) dd∗
k⋅

= ∫
∏

{j∶𝛾j=1,rij=0}
Poi(xij; sigjd∗

kj)
∏

{j∶𝛾j=0,rij=0}
Poi(xij; sigj)

×
∏

{j∶𝛾j=1,rij=0}
Ga(d∗

kj; a, b) dd∗
kj

=
∏

{j∶rij=0}

(sigj)xij

xij!
exp

⎧⎪⎨⎪⎩−si
∑

{j∶𝛾j=0,rij=0}
gj

⎫⎪⎬⎪⎭
×

∏
{j∶𝛾j=1,rij=0}

ba

Γ(a)
Γ(a + xij)

(b + sigj)a+xij
.

where si = exp{s̃i}, gj = exp{g̃j}, and d∗
kj = exp{d̃∗

kj}
In terms of each feature j, j = 1,… , p, we write

f (x⋅j|z, 𝛾j = 0, s̃, g̃j, r⋅j) =
∏

{i∶rij=0}

(sigj)xij

xij!
exp

⎧⎪⎨⎪⎩−gj
∑

{i∶rij=0}
si

⎫⎪⎬⎪⎭
and

f (x⋅j|z, 𝛾j = 1, s̃, g̃j, r⋅j) =
∏

{i∶rij=0}

(sigj)xij

xij!

(
ba

Γ(a)

)K

×
K∏

k=1

Γ(a +
∑

{i∶zi=k,rij=0} xij)

(b + gj
∑

{i∶zi=k,rij=0} si)
a+
∑

{i∶zi=k,rij=0} xij
.

At each MCMC iteration, we perform the following steps:
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Update of the set of discriminatory features 𝜸: We ran-

domly perform an add-delete-swap step. We repeat this step

20 times to ensure validation of the feature selection for

each given cluster assignment. The general Hasting ratio can

be written as

r =
p(𝜸∗|z, s̃, g̃j,R, 𝜔,X)

p(𝜸(b−1)|z, s̃, g̃j,R, 𝜔,X)
J(𝜸(b−1)|𝜸∗)
J(𝜸∗|𝜸(b−1))

=
f (X|z, 𝜸∗, s̃, g̃j,R)

f (X|z, 𝜸(b−1), s̃, g̃j,R)
p(𝜸∗|𝜔)

p(𝜸(b−1)|𝜔) J(𝜸(b−1)|𝜸∗)
J(𝜸∗|𝜸(b−1))

.

For both add/delete and swap steps, the proposal density

ratio equals to 1.

More specifically, for the add-detele step, we randomly

sample a feature j, j = 1,… , p and propose to change the value

of 𝛾j with probability min(1,mMH), where

madd
MH

=

(
ba

Γ(a)

)K ∏K
k=1

Γ(a+
∑

i∶zi=k,rij=0 xij)

(b+gj
∑

i∶zi=k,rij=0 si)
a+
∑

i∶zi=k,rij=0 xij

exp
(
−gj
∑

{i∶rij=0} si

) 𝜔

1 − 𝜔
,

mdel
MH

=
exp
(
−gj
∑

{i∶rij=0} si

)
(

ba

Γ(a)

)K ∏K
k=1

Γ(a+
∑

i∶zi=k,rij=0 xij)

(b+gj
∑

i∶zi=k,rij=0 si)
a+
∑

i∶zi=k,rij=0 xij

1 − 𝜔
𝜔

.

For the swap step, we randomly swap 2 features if appli-

cable, that is, change the value of a feature 𝛾j1 from 1 to 0,

and, correspondingly, of another currently nondiscriminatory

feature j2, that is, change the value of 𝛾j2 from 0 to 1, with

probability min(1, rswp

MH
), where

m
swp

MH
=

exp
(
−gj1

∑
{i∶rij=0} si

)
∏K

k=1

Γ(a+
∑

{i∶zi=k,rij=0} xij1
)

(b+gj1
∑

{i∶zi=k,rij=0} si)
a+
∑
{i∶zi=k,rij=0} xij1

×

∏K
k=1

Γ(a+
∑

{i∶zi=k,rij=0} xij2
)

(b+gj2
∑

{i∶zi=k,rij=0} si)
a+
∑
{i∶zi=k,rij=0} xij2

exp
(
−gj2

∑
{i∶rij=0} si

) .

Finally, we update the hyperparameter𝜔 for inclusion prob-

ability,

𝜔|𝜸, a𝜔, b𝜔 ∼ Be(a𝜔 + p𝛾 , b𝜔 + n − p𝛾 ).

Update of the cluster allocation for the selected features z:
At each iteration, we perform a Gibbs sampling to update zi
sequentially from observation 1 to n according to Algorithm

3 in [45]. In order to do this, we first need to integrate out

the parameter d∗
k⋅ based on the its prior and all observations

except itself, that is, all of xi′⋅ for which i′ ≠ i.

f (xi⋅|zi = k, z−i, 𝜸, s̃, g̃,R,X−i⋅)

= ∫ f (xi⋅|zi = k, 𝜸,d∗
k⋅, s̃i, g̃, ri⋅)

× p(d∗
k⋅|z−i, 𝜸, s̃−i, g̃,R−i⋅,X−i⋅) dd∗

k⋅

= ∫
∏

{j∶𝛾j=1,rij=0}
Poi(xij; sigjd∗

kj)
∏

{j∶𝛾j=0,rij=0}
Poi(xij; sigj)

∏
{j∶𝛾j=1,rij=0}

Ga

⎛⎜⎜⎝d∗
kj; a +

∑
{i′∶zi′ =k,ri′ j=0,i′≠i}

× xi′j, b + gj
∑

{i′∶zi′ =k,ri′ j=0,i′≠i}
s′i
⎞⎟⎟⎠ dd∗

kj

=
∏

{j∶rij=0}

(sigj)xij

xij!
exp

⎧⎪⎨⎪⎩−si
∑

{j∶𝛾j=0,rij=0}
gj

⎫⎪⎬⎪⎭
∏

{j∶𝛾j=1,rij=0}

(
b + gj

∑
{i′∶zi′ =k,ri′ j=0,i′≠i} s′i

)a+
∑

{i′∶zi′ =k,ri′ j=0,i′≠i} xi′ j

Γ(a +
∑

{i′∶zi′ =k,ri′ j=0,i′≠i} xi′j)

∏
{j∶𝛾j=1,rij=0}

Γ
(

a +
∑

{i′∶zi′ =k,ri′ j=0} xi′j

)
(

b + gj
∑

{i′∶zi′ =k,ri′ j=0} s′i
)a+

∑
{i′∶zi′ =k,ri′ j=0} xi′ j

.

Then, we propose to either:

• form a new cluster (change the value of zi to K−i + 1) with

probability pK−i+1, where

pK−i+1 =
𝛼

n−1+𝛼
f (xi⋅|𝜸, s̃i, g̃, ri⋅)

𝛼

n−1+𝛼
f (xi⋅|𝜸, s̃i, g̃, ri⋅) +

∑K
k=1

nk,−i

n−1+𝛼

× f (xi⋅|zi = k, z−i, 𝜸, s̃, g̃,R,X−i⋅)

.

• allocate the observation to any of the existing clusters, say

cluster k ∈ {1,… ,K−i + 1}, with probability pk, where

pk =
nk,−i

n−1+𝛼
f (xi⋅|zi = k, z−i, 𝜸, s̃, g̃,R,X−i⋅)

𝛼

n−1+𝛼
f (xi⋅|𝜸, s̃i, g̃, ri⋅) +

∑K
k=1

nk,−i

n−1+𝛼
× f (xi⋅|zi = k, z−i, 𝜸, s̃, g̃,R,X−i⋅)

.

Finally, we update the concentration parameter 𝛼, by fol-

lowing the algorithm in [20], that is we generate an auxiliary

variable 𝜂𝛼|𝛼 ∼ Be(𝛼 + 1, n) and then we sample 𝛼 from a

mxiture of 2 gamma densities,

𝛼|𝜂𝛼, z ∼ 𝜋𝜂Ga(a𝛼 + K, b − log(𝜂𝛼))

+ (1 − 𝜋𝜂)Ga(a𝛼 + K − 1, b𝛼 − log(𝜂𝛼)),

with the weights 𝜋𝜂 defined by 𝜋𝜂∕(1 − 𝜋𝜂) = (a𝛼 + K
−1)∕(n(b𝛼 − log(𝜂𝛼))).
Update of the scaling factors: We can rewrite the prior dis-

tribution in Equations 3 to 4 by introducing latent auxiliary
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variables, that specify how the s̃i and g̃j are assigned to any of

the inner and outer mixture components. More specifically,

we can introduce a n × 1 vector of assignment indicators, 𝝂,

with 𝜈i = m indicating that s̃i is a sample from f s
m(s̃i|tm, 𝜂m).

The weights 𝜙s
m determine the probability of each value 𝜈i =

m, with m = 1, 2,…. Correspondingly, we can consider a

n × 1 vector 𝝐 of binary elements 𝜖i, where 𝜖i = 1 indicates

that, given 𝜈i = m, s̃i is drawn from a N(𝜂m, 𝜎
2
s ) with proba-

bility tm, and 𝜖i = 0 indicates that s̃i = 0 is drawn from the

right component of f s
m(s̃i|tm, 𝜂m), that is, N

(
cs−tm𝜂m

1−tm
, 𝜎2

s

)
, with

probability 1 − tm. Similarly, we can introduce a p × 1 vector

𝝃, with 𝜉j = l indicating that g̃j is sampled from f g
l (g̃j|ql, 𝜇l),

l = 1, 2,…, and 𝜙
g
l = p(𝝃 = l). Correspondingly, given the

assignments obtained in the vector 𝝃, we can define a p × 1

vector 𝝍 of binary elements 𝜓j, where 𝜓j = 1 indicates that,

given 𝜉j = l, then g̃j is drawn from N(𝜇l, 𝜎
2
g), whereas 𝜓j = 0

indicates that g̃j is from N
(

cg−ql𝜇l

1−ql
, 𝜎2

g

)
. Thus, the prior model

Equations 3 and 4 can be rewritten as

s̃i|𝜈i, 𝜖i, t, 𝜼 ∼ N

(
𝜖i𝜂𝜈i + (1 − 𝜖i)

cs − t𝜈i𝜂𝜈i

1 − t𝜈i

, 𝜎2
s

)
(8)

and

g̃j|𝜉j, 𝜓j,q,𝝁 ∼ N

(
𝜓j𝜇𝜉j + (1 − 𝜓j)

cg − q𝜉j𝜇𝜉j

1 − q𝜉j

, 𝜎2
g

)
, (9)

where t, 𝜼, q, and 𝝁 denote the vectors of tm, 𝜂m, ql, and

𝜇l, respectively. Therefore, the update of the sample- and

feature-specific scaling factors si and gj can proceed as fol-

lows, after logarithmic transformation:

a) Update of the s̃i’s: We perform Metropolis sampling to

update s̃i, where s̃i = log{si}, sequentially from observation

1 to n. We propose a new s̃∗i from N(s̃(b−1)
i , 𝜏2

s ) and accept it

with probability min(1,mMH), where

mMH =
p(s̃∗i |𝜸, g̃, ri⋅, 𝜈i, 𝜖i, t, 𝜼, xi⋅)

p(s̃(b−1)
i |𝜸, g̃, ri⋅, 𝜈i, 𝜖i, t, 𝜼, xi⋅)

J(s̃(b−1)
i |s̃∗i )

J(s̃∗i |s̃(b−1)
i )

=
f (xi⋅|𝜸, s̃∗i , g̃, ri⋅)

f (xi⋅|𝜸, s̃(b−1)
i , g̃, ri⋅)

p(s̃∗i |𝜈i, 𝜖i, t, 𝜼)

p(s̃(b−1)
i |𝜈i, 𝜖i, t, 𝜼)

=
s∗i
∑

{j∶rij=0} xij exp
(
−s∗i

∑
{j∶𝛾j=0,rij=0} gj

)
s(b−1)

i

∑
{j∶rij=0} xij

exp
(
−s(b−1)

i
∑

{j∶𝛾j=0,rij=0} gj

)
×

∏
j∶𝛾j=1,rij=0(b + s∗i gj)−a−xij∏

j∶𝛾j=1,rij=0(b + s(b−1)
i gj)−a−xij

×
N

(
s̃∗i ; 𝜖i𝜂𝜈i + (1 − 𝜖i)

cs−t𝜈i 𝜂𝜈i
1−t𝜈i

, 𝜎2
s

)
N

(
s̃(b−1)

i ; 𝜖i𝜂𝜈i + (1 − 𝜖i)
cs−t𝜈i 𝜂𝜈i

1−t𝜈i
, 𝜎2

s

) .
Since 𝝂, 𝝐, t, and 𝜼 have conjugate full conditionals, we use

Gibbs sampling to update them one after another

• Gibbs sampling for updating 𝜈i, i = 1,… , n:

𝜋(𝜈i = l|𝝂−i, 𝜖i, t, 𝜼, s̃i) ∝ 𝜙s
mN

×
(

s̃i; 𝜖i𝜂m + (1 − 𝜖i)
cs − tm𝜂m

1 − tm
, 𝜎2

s

)
.

• Gibbs sampling for updating 𝜖i, i = 1,… , n:

𝜋(𝜖i|𝜈i = m, 𝝐−i, t, 𝜼, s̃i)

∝

{
(1 − tm)N

(
s̃i;

cs−tm𝜂m

1−tm
, 𝜎2

s

)
if 𝜖i = 0

tmN
(
s̃i; 𝜂m, 𝜎

2
s
)

if 𝜖i = 1
.

• Gibbs sampling for updating tm,m = 1,… ,M:

tm|𝝂, 𝝐 ∼ Be

(
at +

n∑
i=1

I(𝜈i = m)I(𝜖i = 1), bt

× +
n∑

i=1

I(𝜈i = m)I(𝜖i = 0)

)
.

• Gibbs sampling for updating 𝜂m,m = 1,… ,M:

𝜂m|𝝂, 𝝐, t, s̃ ∼ N

(
cm∕𝜎2

s

em∕𝜎2
s + 1∕𝜏2

𝜂

,
1

em∕𝜎2
s + 1∕𝜏2

𝜂

)
,

where cm =
∑

{i∶𝜈i=m,𝜖i=1} s̃i−
tm

1−tm

∑
{i∶𝜈i=m,𝜖i=0}

(
s̃i −

cs

1−tm

)
and em =

∑n
i=1 I(𝜈i = m)I(𝜖i = 1) +

∑
{i∶𝜈i=m,𝜖i=0}

(
tm

1−tm

)2

.

• Gibbs Sampling for updating 𝜙s
m,m = 1,… ,M by

stick-breaking process [33]:

𝜙s
1
= v1,

𝜙s
2
= (1 − v1)v2,

⋮

𝜙s
M = (1 − v1) · · · (1 − vM−1)vM ,

where vm|𝝂 ∼ Be
(
am +

∑n
i=1 I(𝜈i = m), bm +

∑n
i=1 I(𝜈i > m)

)
.

b) Update of the gj’s: We perform Metropolis sampling to

update g̃j, where g̃j = log{gj}, sequentially from feature 1 to

p. We propose a new g̃∗
j from N(g̃(b−1)

j , 𝜏2
g ) and accept it with

probability min(1,mMH), where

mMH =
p(g̃∗

j |z, 𝛾j, s̃, r⋅j, 𝜉j, 𝜓j,q,𝝁, x⋅j)

p(g̃(b−1)
j |z, 𝛾j, s̃, r⋅j, 𝜉j, 𝜓j,q,𝝁, x⋅j)

J(g̃(b−1)
j |g̃∗

j )

J(g̃∗
j |g̃(b−1)

j )

=
f (x⋅j|z, 𝛾j, s̃, g̃∗

j , r⋅j)

f (x⋅j|z, 𝛾j, s̃, g̃(b−1)
j , r⋅j)

p(g̃∗
j |𝜉j, 𝜓j,q,𝝁)

p(g̃(b−1)
j |𝜉j, 𝜓j,q,𝝁)
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g∗j
∑
{i∶rij=0} xij

g(b−1)
j

∑
{i∶rij=0} xij

exp
{
−g∗j

∑
{i∶rij=0} si

}
exp
{
−g(b−1)

j
∑

{i∶rij=0} si

}

×
N

(
g̃∗j ;𝜓j𝜇𝜉j+(1−𝜓j)

cg−q𝜉j 𝜇𝜉j
1−q𝜉j

,𝜎2
g

)
N

(
g̃(b−1)

j ;𝜓j𝜇𝜉j+(1−𝜓j)
cg−q𝜉j 𝜇𝜉j

1−q𝜉j
,𝜎2

g

) if 𝛾j = 0

g∗j
∑
{i∶rij=0} xij ∏K

k=1
(b+g∗j

∑
{i∶zi=k,rij=0} si)

−a−
∑
{i∶zi=k,rij=0} xij

g(b−1)
j

∑
{i∶rij=0} xij ∏K

k=1
(b+g(b−1)

j
∑

{i∶zi=k,rij=0} si)
−a−

∑
{i∶zi=k,rij=0} xij

×
N

(
g̃∗j ;𝜓j𝜇𝜉j+(1−𝜓j)

cg−q𝜉j 𝜇𝜉j
1−q𝜉j

,𝜎2
g

)
N

(
g̃(b−1)

j ;𝜓j𝜇𝜉j+(1−𝜓j)
cg−q𝜉j 𝜇𝜉j

1−q𝜉j
,𝜎2

g

) if 𝛾j = 1

.

Since 𝝃, 𝝍 , q, and 𝝁 have conjugate full conditionals, we

use Gibbs sampling to update them one after another

• Gibbs sampling for updating 𝜉j, j = 1,… , p:

p(𝜉j = l|𝝃−j, 𝜓j,q,𝝁, g̃j)

∝ 𝜙
g
l N

(
g̃j;𝜓j𝜇l + (1 − 𝜓j)

cg − ql𝜇l

1 − ql
, 𝜎2

g

)
.

• Gibbs sampling for updating 𝜓j, j = 1,… , p:

𝜋(𝜓j|𝜉j = l,𝝍−j,q,𝝁, g̃j)

∝

{
(1 − ql)N

(
g̃j;

cg−ql𝜇l

1−ql
, 𝜎2

g

)
if 𝜓j = 0

qlN
(
g̃j;𝜇l, 𝜎

2
g
)

if 𝜓j = 1
.

• Gibbs sampling for updating ql, l = 1,… ,L:

ql|𝝃,𝝍 ∼ Be

(
aq +

p∑
j=1

I(𝜉j = l)I(𝜓j = 1), bq

+
p∑

j=1

I(𝜉j = l)I(𝜓j = 0)
)
.

• Gibbs sampling for updating 𝜇l, l = 1,… ,L:

𝜇l|𝝃,𝝍 ,q, g̃ ∼ N

(
cl∕𝜎2

g

el∕𝜎2
g + 1∕𝜏2

𝜇

,
1

el∕𝜎2
g + 1∕𝜏2

𝜇

)
,

where cl =
∑

{j∶𝜉j=l,𝜓j=1} g̃j −
ql

1−ql

∑
{j∶𝜉j=l,𝜓j=0}

(
g̃j −

cg

1−ql

)
and el =

∑p
j=1

I(𝜉j = l)I(𝜓j = 1) +
∑

{j∶𝜉j=l,𝜓j=0}

(
ql

1−ql

)2

.

• Gibbs Sampling for updating 𝜙
g
l , l= 1,… ,L by

stick-breaking process [33]:

𝜙
g
1
= v1,

𝜙
g
2
= (1 − v1)v2,

⋮

𝜙
g
L = (1 − v1) · · · (1 − vL−1)vL,

where vl|𝝃 ∼ Be
(

1 +
∑p

j=1
I(𝜉j = l), 1 +

∑p
j=1

I(𝜉j > l)
)

.

Update of zero-inflation latent indicator rij: The full con-

ditionals of the rij’s can be obtained after considering that we

need to consider only those cases for which xij = 0, and

p(rij|xij = 0, zi = k, 𝛾j, s̃i, g̃j, d∗
kj, 𝜋)

∝ f (xij = 0|zi = k, 𝛾j, s̃i, g̃j, d∗
kj, rij)p(rij|𝜋)

= (exp
{
−sigjd∗

kj
𝛾j
}
)1−rij𝜋rij(1 − 𝜋)1−rij

= 𝜋rij

[
(1 − 𝜋) exp

{
−sigjd∗

kj
𝛾j
}]1−rij

.

In order to sample from the above full conditional, we

proceed with a Metropolis-Hasting within Gibbs approach,

where within each iteration we first propose a value d∗
kj for

which 𝛾j = 0 by sampling

d∗
kj|⋅ ∼ Ga

⎛⎜⎜⎝a +
∑

{i∶zi=k,rij=0}
xij, b + gj

∑
{i∶zi=k,rij=0}

si

⎞⎟⎟⎠ ,
and then propose a value for rij by sampling

p(rij|xij = 0, zi = k, 𝛾j, s̃i, g̃j, d∗
kj, 𝜋)

=
⎧⎪⎨⎪⎩

𝜋
rij [(1−𝜋)e−sigj]1−rij

𝜋+(1−𝜋) exp{−sigj} if 𝛾j = 0

𝜋
rij
[
(1−𝜋) exp

{
−sigjd∗

kj

}]1−rij

𝜋+(1−𝜋) exp
{
−sigjd∗

kj

} if 𝛾j = 1.

After the Metropolis-Hasting step, we use a Gibbs sampling

step to update 𝜋, as

𝜋|R, a𝜋, b𝜋 ∼ Be

×
(

a𝜋 +
n∑

i=1

p∑
j=1

rij, b𝜋 +
n∑

i=1

p∑
j=1

I(xij = 0) −
n∑

i=1

p∑
j=1

rij

)
.
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