"A Bayesian Semi-parametric Approach for the Differential Analysis of Sequence Counts Data" by Guindani et. al. - Supporting Information

Appendix I-Full conditionals for the one library case
We start outlining the relevant full conditionals for Markov chain Monte Carlo sampling in the one library case. For a given k, consider model (2) completed with $G^{*}(\lambda)=G a(\alpha, \beta)$. We can integrate out the λ_{i} 's and rewrite the likelihood as a function only of the cluster configurations s, i.e. the components' assignments in the mixture. Thus,

$$
p(\mathbf{y} \mid \mathbf{s}, k)=\frac{1}{\prod_{i=1}^{k} y_{i}!} \frac{\beta^{\alpha L}}{\Gamma(\alpha)^{L}} \prod_{j=1}^{L} \frac{\Gamma\left(\alpha+\bar{y}_{j}\right)}{\left(\beta+n_{j}\right)^{\left(\alpha+\bar{y}_{j}\right)}},
$$

where $L=\max \left\{s_{i}, i=1, \ldots, k\right\}, n_{j}=\sum_{i=1}^{k} I\left(s_{i}=j\right)$ and $\bar{y}_{j}=\sum_{i=1}^{k} I\left(s_{i}=\right.$ j) y_{i} are, respectively, the number of clusters, the cluster frequencies and the total counts in cluster j at an arbitrary iteration of the posterior simulation. Therefore, posterior inference can be obtained by sampling the configuration indicators \mathbf{s} and the unknown number of tags k in this reduced model.
More precisely, the full conditional for the configuration indicators s is Multinomial with probabilities

$$
p\left(s_{i}=l \mid \mathbf{s}_{-i}, k, \mathbf{y}\right) \propto p(\mathbf{s} \mid k) \times p(\mathbf{y} \mid \mathbf{s}, k), \quad l=1, \ldots, L^{-i}+1
$$

where $\mathbf{s}_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{k}\right)^{T}, L^{-i}=\max \left\{\mathbf{s}_{-i}\right\}$, and $p(\mathbf{s} \mid k)$ is as in (4) with $L=L^{-i}$ if $s_{i}=l, l=1, \ldots, L^{-i}$ or $L=L^{-i}+1$ if s_{i} is a newly sampled label (see MacEachern and Müller, 1998).
Inference on the number of distinct sequences k is obtained by means of a Metropolis-within-Gibbs step. At each iteration, we propose to increase (or decrease) the current value of k by a fixed amount with probability p (or $1-$ p). For example, in the application presented in section 3.4 , we set $p=1 / 2$. Accordingly, we add (or delete) a set of zero counts and corresponding labels s_{i} 's to the current data. To be more specific, suppose we propose to move from the current k to $\tilde{k}=k+1$. If the move is accepted, the data set has to be augmented to accommodate for the new tag with $y_{k+1}=0$ and $s_{k+1}=\tilde{s}_{k+1}$. The value of \tilde{s}_{k+1} is proposed by means of a single draw from the Pólya Urn. Let $\tilde{\mathbf{s}}=\left(s_{1}, \ldots, s_{k}, \tilde{s}_{k+1}\right)^{T}$ and $L=\max \left\{s_{i}, i=1, \ldots, k\right\}$. Then, it can be shown that $\tilde{s}_{k+1} \sim \operatorname{Multin}\left(1 ; q_{1}, \ldots, q_{L+1}\right)$, where

$$
q_{j} \propto \operatorname{Prob}(y=0 \mid \mathbf{s}, \mathbf{y})=\left(\frac{\beta+n_{j}}{\beta+n_{j}+1}\right)^{\left(\alpha+\bar{y}_{j}\right)}, \quad j=1, \ldots, L
$$

and

$$
q_{L+1} \propto \operatorname{Prob}(y=0)=\left(\frac{\beta}{\beta+1}\right)^{\alpha}
$$

In order to obtain the proper acceptance rate, we need to evaluate the probability of the reverse move, from \tilde{k} to k. The move corresponds to the deletion of one of the zero counts previously added; hence, we sample the proposed deletion from a discrete uniform distribution on $\left\{k^{\prime}+1, \ldots, \tilde{k}\right\}$. Thus, the MetropolisHasting ratio for the upward move is given by

$$
A=\frac{p(k+1)}{p(k)} \times \frac{p(\tilde{\mathbf{s}} \mid \tilde{k})}{p(\mathbf{s} \mid k)} \times \frac{p(\tilde{\mathbf{y}} \mid \tilde{\mathbf{s}}, \tilde{k})}{p(\mathbf{y} \mid \mathbf{s}, k)} \times \frac{1-p}{p} \times \frac{\frac{1}{\hat{k-k^{\prime}}}}{q_{\tilde{s}_{\tilde{k}}}}
$$

and the move is accepted with probability $a=\min (1, A)$. Instead, the move from k to $k-1$ is accepted with probability $a=\min \left(1, A^{-1}\right)$. In order to allow for the exploration of a large posterior support space, this step can be repeated multiple times in a single iteration. Alternatively, the previous steps can be easily modified to take into account a generic step ($m>0$) up or down from the current state k.
Given an imputed cluster structure \mathbf{s}, it is always possible to sample from the posterior of the cluster-specific abundances $\lambda_{j}^{*}, j=1, \ldots, L$ (hence, the tag specific $\left.\lambda_{i}\right)$. As a matter of fact, $\lambda_{j}^{*} \mid k, \mathbf{s}, \mathbf{y} \sim G a\left(\alpha+\bar{y}_{j}, n_{j}+\beta\right)$, where $n_{j}=$ $\sum_{i=1}^{k} I\left(s_{i}=j\right)$ is the cluster frequency and $\bar{y}_{j}=\sum_{i=1}^{k} y_{i} I\left(s_{i}=j\right)$ represents the cluster mass, $j=1, \ldots, L$.

Appendix II -Full conditionals for the class comparison.
We follow the discussion in Section 3 and denote with, $x_{t}=1, \ldots, C$, the tissue collected in sample t. Then, $y_{i x}=\sum_{t: x_{t}=x} y_{i t}$ is the observed count of sequence i under condition x and m_{x} is the number of samples drawn under condition $x, x=1, \ldots, C$. Again, we can integrate out the random probability measure G and the parameters of the base measure and consider only the cluster configuration indicators $s_{i x}$ such that $s_{i x}=j$ iff $\lambda_{i x}=\lambda_{j}^{*}$. Then, the marginal likelihood is

$$
\begin{equation*}
p(\mathbf{y} \mid \mathbf{s}, k)=h(\mathbf{y}) \frac{\beta^{\alpha L}}{\Gamma(\alpha)^{L}} \prod_{j=1}^{L} \frac{\Gamma\left(\alpha+\tilde{y}_{j}\right)}{\left(\beta+M_{j}\right)^{\alpha+\tilde{y}_{j}}}, \tag{9}
\end{equation*}
$$

where $h(\mathbf{y})=1 /\left(\prod_{i=1}^{K} \prod_{x=1}^{C} y_{i x}!\right), \tilde{y}_{j}=\sum_{i=1}^{k} \sum_{x=1}^{C} y_{i x} I\left(s_{i x}=j\right)$ is the sum of counts in cluster $j, M_{j}=\sum_{x=1}^{C} N_{j, x} m_{x}$, with $N_{j, x}=\sum_{i=1}^{k} I\left(s_{i x}=j\right)$, is a measure of the cluster size, and L denotes the number of clusters.

In order to update the cluster configurations $\left\{s_{i x}\right\}$, it is convenient to rewrite (8) explicitly in terms of the latent indicators of differential expression, $w_{i x}$. We need to introduce further notation. Let $x>1$, since $x=1$ denotes the reference condition. Also, let $\mathbf{w}_{-i, x}$ denote the vector of w 's with the exclusion of the single element $w_{i x}$; analogously, define $\mathbf{s}_{-i, x}$. Recall that if $w_{i x}=0$, then $s_{i x}=s_{i 1}$. Hence, the full conditional $p\left(s_{i x}, x>1 \mid w_{i x}=0, \mathbf{w}_{-i, x}, \mathbf{s}_{-i, x}, \mathbf{y}\right)$ is a point mass at $s_{i 1}$. Instead, conditional on $w_{i x}=1$, the distribution of $s_{i x}$ is Multinomial with probabilities
$p\left(s_{i x}=j \mid w_{i x}=1, w_{-i, x}, \mathbf{s}_{-i, x}, \mathbf{y}, k\right) \propto \begin{cases}\frac{\nu}{\nu+W} p(\mathbf{y} \mid \mathbf{s}, k) & \text { if } j=L^{-i, x}+1 \\ \frac{W_{j}}{\nu+W} p(\mathbf{y} \mid \mathbf{s}, k) & \text { if } j=1, \ldots, L^{-i, x},\end{cases}$
where $W=\sum_{i=1}^{k} \sum_{x=2}^{C} I\left(w_{i x}=1\right)$ is the overall frequency of differentially abundant sequences and $W_{j}=\sum_{i=1}^{k} \sum_{x=2}^{C} I\left(s_{i x}=j\right) I\left(w_{i x}=1\right)$ is the cluster specific frequency $\left(W=\sum_{j} W_{j}\right), j=1, \ldots, L$, at any given iteration. In addition, $L^{-i, x}=\max \left\{s_{r, z},(r, z) \neq(i, x), r=1, \ldots, k, z=1, \ldots, C\right\}$ and

$$
\begin{align*}
p(\mathbf{y} \mid \mathbf{s}, k) & \propto p\left(y_{r, t},(r, x(t))=(i, x) \mid y_{r, t},(r, x(t)) \neq(i, x), \mathbf{s}\right) \\
& =\frac{\Gamma\left(\alpha+\tilde{y}_{j}\right)}{\left(\beta+M_{j}\right)^{\left(\alpha+\tilde{y}_{j}\right)}} \frac{\left(\beta+M_{j}^{-}\right)^{\left(\alpha+\tilde{y}_{j}^{-}\right)}}{\Gamma\left(\alpha+\tilde{y}_{j}^{-}\right)}, \quad j=1, \ldots, L, \tag{11}
\end{align*}
$$

where the quantities $M_{j}^{-}=M_{j}-N_{j, x}^{-} m_{x}$ with $N_{j, x}^{-}=\sum_{r \neq i} I\left(s_{r, x}=j\right)$, and $\tilde{y}_{j}^{-}=\sum_{(r, z) \neq(i, x)} y_{r, z} I\left(s_{r, z}=j\right)$ denote, respectively, measures of the size and the total counts of each cluster, with the i th observations in condition x excluded. Since the algorithm just described relies on repeated draws of the single elements of each vector \mathbf{s}_{x} and \mathbf{w}_{x}, it is not efficient when applied to large datasets. We can improve the mixing of the chain and decrease computation time by employing a merge-split move such as the one devised by the SAMS sampler by Dahl (2003). This algorithm was used in the data example presented in section 3.4. Conditional on the observations $y_{i, x}$ with $w_{i, x}=1$, the algorithm can be described as follows:

1. At any given iteration, uniformly select a pair of distinct observations, say i and j.
2. (a) If i and j belong to the same cluster, say S, then propose a new cluster configuration by splitting the common cluster as follows:

- Start by forming singleton sets, say $S_{i}=\{i\}$ and $S_{j}=\{j\} ;$
- Consider a uniformly selected permutation of the remaining elements in S;
- Any remaining element l in S is added to either S_{i} or S_{j} with probabilities

$$
\begin{equation*}
p\left(l \in S_{i} \mid \ldots\right)=\frac{W_{S_{i}} p\left(\mathbf{y} \mid \mathbf{s}_{(i)}, k\right)}{W_{S_{i}} p\left(\mathbf{y} \mid \mathbf{s}_{(i)}, k\right)+W_{S_{j}} p\left(\mathbf{y} \mid \mathbf{s}_{(j)}, k\right)}, \tag{12}
\end{equation*}
$$

where $W_{S_{r}}$ is the cardinality of cluster $S_{r}, r \in\{i, j\}, p\left(\mathbf{y} \mid \mathbf{s}^{\prime}, k\right)$ is as in (11) and $\mathbf{s}_{(r)}$ is the vector of cluster configurations obtained assuming $s_{l} \in S_{r}, r \in\{i, j\}$.

- Let \mathbf{s}^{*} denote the proposed partition. Accept \mathbf{s}^{*} over the current partition \mathbf{s} with probability

$$
a_{\text {split }}=\min \left[1, \frac{p\left(\mathbf{s}^{*} \mid \mathbf{y}\right)}{p(\mathbf{s} \mid \mathbf{y})} \frac{p\left(\mathbf{s} \mid \mathbf{s}^{*}\right)}{p\left(\mathbf{s}^{*} \mid \mathbf{s}\right)}\right]
$$

where $p(\mathbf{s} \mid \mathbf{y})$ and $p\left(\mathbf{s}^{*} \mid \mathbf{y}\right)$ are the partition posterior distributions evaluated, respectively, at \mathbf{s} and $\mathbf{s}^{*}, p\left(\mathbf{s}^{*} \mid \mathbf{s}\right)$ is the product of the probabilities in (12) and $p\left(\mathbf{s} \mid \mathbf{s}^{*}\right)=1$.
2. (b) If i and j belong to two different clusters, propose to merge them in a new partition s^{*}. The Metropolis Hasting ratio for the proposed move is $a_{\text {merge }}=\min \left[1, \frac{1}{a_{\text {split }}}\right]$, which requires the computation of a product of probabilities (12) to take into account the reverse split of the merged partition s^{*} back into the current s. We refer to Dahl (2003) for further details.

Finally, the full conditional for the indicators of differential abundance $\left\{w_{i x}, i>\right.$ $1\}$ is obtained as follows. Note that if $s_{i x} \neq s_{i 1}$ then $w_{i x}=1$ with probability one. On the other hand, if $s_{i x}=s_{i 1}$ then $w_{i x}=1$ or $w_{i x}=0$ with probability

$$
\begin{array}{r}
p\left(w_{i x} \mid s_{i 1}=s_{i x}, \mathbf{s}_{-i, x}, \mathbf{w}_{-i, x}, \mathbf{y}\right) \propto p\left(s_{i x} \mid w_{i x}, s_{i 1}=s_{i x}, w_{-i, x}, \mathbf{y}\right) \\
\times p\left(w_{i x}\right),
\end{array}
$$

where the conditional distribution on the right side is given by (10). Alternatively, it would be possible to update the pairs $\left(w_{i x}, s_{i x}\right)$ jointly, for $x>1$.
Finally, the update of k mimicks the one described in Appendix I with some minor adjustments to take into account the presence of multiple samples; hence, it is omitted.

