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Prostate Cancer Trial Data

Testing Assumptions. We test the validity of the simplifying assumption of no association

between the distributions of the PDGFR values X and Y and the other covariates Z in the

PFS model, by regressing the individual pre- and post- treatment mean values on hemoglobin

levels and increase in prostate antigen levels. No significant association was revealed by such

analysis. Here, we report the results of the marginal regression of the mean values on each

variable. Multivariable regressions confirmed the results of the marginal analyses.

[Table 1 about here.]

Time-varying effect of PDGFR inhibition. Although PDFGR inhibition seems to be

associated with increased PFS time in the first few months after therapy, the opposite seems

true after some time. An extended Cox proportional hazard model confirms this time-varying

effect (Table 2).

[Table 2 about here.]

Posterior distribution of the biological profile ∆. Our results suggest that the biological

assumption of the trial might have been fallacious, and provide an understanding of the

reasons of the negative therapeutic results.

Table 3 expands on Figure 3 in the text and reports the posterior probability that a patient

belongs to any of the three clusters for each of the two arms of the study. In particular, the

probability of a patient experiencing a shift toward the left of the biomarker profiles after



2 Biometrics, 000 0000

treatment, corresponding to E(∆|data) < 0.5, is slightly higher in the DI arm than in the DP

arm; however, the two distributions do not appear to be statistically significantly different

according to a χ2 test of homogeneity (p value=0.2694).

[Table 3 about here.]

MCMC

In the following we detail the Markov Chain Monte Carlo algorithm used to conduct approx-

imate posterior inference. Following Rodriguez et al. (2010), we use a truncation approxima-

tion to the stick-breaking representation of the Dirichlet processes and then resort to methods

for computation in finite-mixture models (see Ishwaran and Zarepour 2002; Ishwaran and

James 2001). We assume that individuals can be clustered in to K groups and that for

each individual the observations on the biomarker level can be clustered into L groups.

Two sets of auxiliary variables are introduced: (ξxi
, ξyi

), i = 1, . . . , N and (ψXij
, ψYik) j =

1, . . . , ni, , k = 1, . . . ,mi, where ξxi
= k and ψXij

= l if Gxi
= G∗k and θXij

= θ∗lk and ξyi
= k

and ψyij = l if Gyi
= G∗k and θyij = θ∗lk, to indicate membership to the distributional and

observational clusters before and after treatment, respectively. The computation proceeds

through the following steps:

(1) Sample ξxi
, for i = 1, . . . , N, from a multinomial distribution with probabilities:

Pr(ξxi
= k| . . .) = qik ∝ π∗k

ni∏
j=1

L∑
l=1

ω∗lk φN(xij; θ
∗
lk),

where θ∗lk = (µ∗lk, σ
∗
lk)

T .

(2) Sample ψXij
, for j = 1, . . . , ni, from a multinomial distribution with probabilities:

Pr(ψXij
= l| . . .) = blXij

∝ ω∗xi,l
φN(xij; θ

∗
xi,l

).

(3) Similarly, sample ξyi
for i = 1, . . . , N, from a multinomial distribution with probabilities:

Pr(ξyi
= k| . . .) = qik ∝ π∗k

mi∏
j=1

L∑
l=1

ω∗lk φN(yij; θ
∗
lk),
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(4) Sample ψyij , for j = 1, . . . ,mi, from a multinomial distribution with probabilities:

Pr(ψyij = l| . . .) = blyij ∝ ω∗yi,l
φN(yij; θ

∗
yi,l

).

(5) Sample π∗k, for k = 1, . . . , K, by generating

(u∗k| . . .) ∼ Be(1 +mx
k + ny

k , α +
K∑

s=k+1

(mx
s + ny

s )), k = 1, . . . , K − 1

u∗K = 1,

where Be(·, ·) denote the Beta density and mx
k and my

k denote the number of pre- and

post-treatment distributions assigned to k, and setting π∗k = u∗k
∏k−1

s=1(1− u∗s).

(6) Sample ω∗kl for k = 1, . . . , K and l = 1, . . . , L by generating

(v∗kl| . . .) ∼ Be(1 + nx
kl + ny

kl, γ +
L∑

s=l+1

(nx
ks + ny

ks)), l = 1, . . . , L− 1

v∗Lk = 1,

where nx
kl and n

y
kl denote respectively the number of observations pre- and post-treatment

assigned to atom l of distribution k, and setting ω∗kl = v∗kl
∏L−1

s=1 (1− v∗ks).

(7) Sample µ∗kl and σ∗kl by generating them from Normal-Inverse Gamma distribution with

updated parameters:

(µ∗kl, σ
∗
kl) ∼ NIG(µ∗∗, k∗∗, a∗∗, b∗∗)

with

µ∗∗ =
k0µ0 + µ̄obs
k0 + n∗kl

,

k∗∗ = k0 + n∗kl

a∗∗ = a0 + n∗kl/2

d∗∗ = d0 + 0.5
∑

i,j|ξxi=k,ξyi=k,ψXij
=l,ψYij

=l

(xij + yij − µ̄obs)2 +
k0n

∗
kl(µ̄obs − µ0)

2

2(k0 + n∗kl)
,

where n∗kl is the number of observations both pre- and post- treatment assigned to atom

l of distribution k and µ̄obs is their average.
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(8) Sample α and γ by generating them from a Gamma distribution with updated parame-

ters:

α ∼ Gam(aα + (K − 1), bα −
K−1∑
k=1

log(1− u∗k)),

γ ∼ Gam(aγ +K(L− 1), bγ −
L−1∑
l=1

K−1∑
k=1

log(1− v∗kl)).
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Table 1
Marginal Regressions of individual pre- and post- treatment mean values on hemoglobin levels and increase in

prostate antigen levels to test the validity of the simplifying assumption of no association between the distributions of
the PDGFR values X and Y and the other covariates Z in the PFS model

β̂0 (p-value) β̂1 (p-value)

X = β0 + β1PSA 13.70 (<0.001) 0.0004 (0.241)

Y = β0 + β1PSA 13.48 (<0.001) -0.0004 (0.417)

X = β0 + β1Hem 13.75 (< 0.001) -0.068 (0.704)

Y = β0 + β1Hem 13.56 (<0.001) 0.088 (0.767)
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Table 2
Fit of extended Cox model studying the time-varying effect of a shift in PDGFR values on progression free survival.
The covariate X is PDFGR inhibition, coded 0 if E(∆|data) < 0.5 and 1 if E(∆|data) > 0.5. The model has hazard

function h(t|X) = h0(t) exp(β1X + β2X ∗ log(t)). Similar time-varying models provided analogous results. β̂
indicates the estimated regression coefficient.

β̂ exp β̂ se(β̂) z p-value

X 2.98 19.748 0.937 3.18 0.0015
X log(t) -1.54 0.214 0.599 -2.58 0.0100
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Table 3
Posterior probability of observing a value of ∆ smaller, equal or greater than 0.5, in the two arms of the study

described in Section 7.

P (∆ < 0.5|data) P (∆ = 0.5|data) P (∆ > 0.5|data)

DI arm 0.34 0.34 0.32
D arm 0.19 0.45 0.36


