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Summary

In many applications, spatial data are assumed to be point referenced, e.g., ob-

served at geo-coded locations. Modelling for this kind of data usually introduces spatial

structure in the form of spatial random effects where a term capturing residual spatial

association is explicitly introduced. This pure spatial effect is customarily modelled

as a mean-zero stationary Gaussian process (GP). The SDP introduced by Gelfand

et al. (2005) produces a random spatial process which is neither Gaussian nor station-

ary. Rather, it varies about a process that is assumed to be stationary and Gaussian.

The SDP arises as a probability weighted collection of random surfaces. This can be

unattractive for modelling, hence inferential purposes since it insists that a process
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realization is one of these surfaces. In this paper, we introduce a random distribution

for the spatial effects that allows different surface selection at different sites. Moreover,

we can specify the model to preserve the property that the marginal distribution of the

effect at each site still comes from a Dirichlet process. The development is offered con-

structively, providing a multivariate extension of the stick-breaking representation of

the weights. We then introduce mixing using this generalized spatial Dirichlet process

(GSDP). We illustrate with a simulated dataset of independent replications and then

demonstrate how to embed the GSDP within a dynamic model specification to remove

the restrictive independence assumption, again providing an illustrative example. Fi-

nally, the GSDP is considerably more computationally demanding to work with than

the SDP and so we also offer a collection of justifications for its use over the SDP.

Some key words: Dirichlet process mixing; dynamic models; latent processes; non-

Gaussian; nonstationary; stick-breaking.

1 Introduction

In many applications, spatial data are assumed to be point referenced, e.g., observed at

geo-coded locations. For example, this is the typical geostatistics setting, where many

phenomena can be seen as realizations of (possibly) vector valued random fields at a

set of known locations, referenced by their geographical coordinates. Modelling for this

kind of data usually introduces spatial structure in the form of spatial random effects

models, where a term capturing residual spatial association is explicitly introduced.

This pure spatial effect is often modelled as a mean-zero stationary Gaussian process

(GP). Within a Bayesian framework, the resulting model specification can be viewed as

hierarchical and model fitting typically requires the use of Markov Chain Monte Carlo

methods. See, e.g. Agarwal & Gelfand (2005) and Ecker & Gelfand (2003).

However, in many cases, either the stationarity or the Gaussian assumption will be
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viewed as inappropriate. Flexible and computationally tractable modelling to remove

the stationarity assumption includes the spatially varying kernel approach of Higdon

et al. (1999) and the local stationarity approach of Fuentes & Smith (2001) but both

are still within the setting of GP’s. The fundamental paper of Sampson & Guttorp

(1992) introduces a nonparametric specification for the covariance function, as does

followup work by Damian et al. (2001) and Schmidt & O’Hagan (2003) but they still

employ a GP in the likelihood.

The Gaussian assumption can be criticized when the spatial variability is caused by

more than one latent processes so that, for example, a mixture of Gaussian processes

would probably be more appropriate. See Brown et al. (2003) for a recent discussion

of this issue related to the study of product quality in the paper-making industry or

Palacios & Steel (2004) for the development of a class of models able to cope with

heavy tail behavior.

Recently, Gelfand et al. (2005) have proposed a spatial Dirichlet process (SDP)

mixture model to produce a random spatial process that is neither Gaussian nor sta-

tionary. The SDP explicitly adopts the distribution of a stochastic process as its base

measure. This is assumed to be stationary and Gaussian; nevertheless the resulting

process is nonstationary and the joint finite dimensional distributions are not normal.

The use of the SDP specification to model the distribution of the spatial component in

a spatial random effect model leads to a fully Bayesian semiparametric approach that,

for fitting purposes, relies on well-known results and algorithms developed for Dirichlet

process (DP) mixing. See, among others, Escobar & West, 1995 and MacEachern &

Müller, 1998.

Since the SDP is essentially a Dirichlet process defined on a space of surfaces, its

realizations are discrete probability measures with countable support with probability

one (Ferguson, 1973 and Sethuraman, 1994). Thus, mixing against a Gaussian ker-
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nel yields an error specification that can be characterized as a countable mixture of

normals, and so in principle it is able to capture virtually any distribution for the

observables. However, the way this is achieved can be unsatisfactory for inferential

purposes. This is because the SDP insists that, given the countable collection of sur-

faces, we actually sample only one of them and then the process realization is that

surface. In this paper, we introduce a random distribution for the spatial effects that

allows different surface selection at different sites. Moreover, we can specify the model

to preserve the property that the marginal distribution of the effect at each site still

comes from a Dirichlet process. The development is offered constructively by provid-

ing a multivariate extension of the stick-breaking representation of the weights which

is known to characterize the usual Dirichlet process (Sethuraman, 1994). Hence, we

define a new class of random probability measures for random vectors and processes,

which includes the customary Dirichlet process specification as a special case. We re-

fer to this new class as generalized spatial Dirichlet process models (GSDP). In fact,

this class can be seen as an extension of the generic class of priors described in Hjort

(2000) and Ishwaran & James (2001), which, as well, take their aim explicitly from the

stick-breaking representation. Also, we clarify modeling specifications under which the

GSDP would be anticipated to have advantages over the SDP.

Fitting DP mixing models require that data come as a set of replications at the

observed sites. This is not unexpected since replications are typically needed for a

full nonparametric approach (see, e.g. Sampson & Guttorp, 1992 and Damian et al.,

2001). Usefully, in Section 7, with replications that are discretized across time, we

show that we can shed the independence assumption by embedding our methodology

within a dynamic model, retaining the temporal dependence. These methods allow

the possibility to infer about the (random) distribution function that is operating at

any given location, at any time, in the region. Nonparametric spatial prediction under
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such modelling can be pursued not only at new locations for each replicate, but more

generally through the generation of an entire new predictive surface at a future time.

Notice that, although we develop our model in the context of Bayesian nonparamet-

ric analysis for spatial data, the theory is general and can be used in other contexts.

For example, rather than indexing our responses by spatial location, we could index

them by a covariate as in usual regression settings. As a result, our model can be used

as an alternate choice in most of the problems where mixtures of products of Dirich-

let processes (Cifarelli & Regazzini, 1978) and/or the dependent Dirichlet processes

(MacEachern, 2000) have been employed. See, for example, De Iorio et al., 2004.

In the context of Bayesian analysis of spatial data, we are aware of only two other

recent approaches that also consider mixture models for spatial data where the weights

are allowed to vary across locations. Fernandez & Green (2002) confine their attention

to Markov random fields over lattices and Poisson distributed data. However, they

consider problems where it is only the weights in the mixture that vary from one

location to another. Our model differs from theirs since it applies to general point

referenced data and both the weights and the parameters of the mixed distribution

are allowed to vary spatially. Griffin & Steel (2004) present an implementation of

the dependent Dirichlet process in the context of spatial processes using Sethuraman’s

constructive representation, providing a random marginal distribution at each site.

The components of the marginal stick breaking are the same at each location, but they

are randomly permuted according to the realizations of a latent point process, so that

at each site the resulting weights are assigned to different surfaces, inducing spatial

dependence. Instead, we define a joint stick-breaking construction for any number and

choice of locations, and also allow the marginal components to vary in space. Moreover,

in our approach the closeness between the random distributions is ruled directly by the

topology of the space, rather than the realizations of an underlying point process.
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The format of the paper is as follows. In Section 2 we briefly review the spatial

Dirichlet process model presented in Gelfand et al. (2005). Section 3 formalizes the

generalized spatial Dirichlet process (GSDP) and develops its properties. It also treats

mixing of Gaussian kernels using this process. Section 4 elaborates the spatially varying

probabilities model that is a component of the GSDP. Section 5 presents the compu-

tational strategy for fitting such models while section 6 offers an example. Section 7

shows how to embed the GSDP within a dynamic model, again with an example. Sec-

tion 8 concludes with a summary as well as a discussion of attractive modeling contexts

for the GSDP.

2 Review of Dirichlet Process and Spatial Dirichlet

Process Modelling

Here, we briefly review the SDP as developed in Gelfand et al. (2005). Denote the

stochastic process by {Y (s) : s ∈ D}, D ⊆ Rd. Let s(n) = (s1, ..., sn) be the specific

distinct locations in D where the observations are collected. Assume that we have

available replicate observations at each location and therefore that the full data set

consists of the collection of vectors Yt = {Yt(s1), ..., Yt(sn)}T , t = 1,...,T . In fact,

imbalance or missingness can be accommodated in the Yt(si) through customary latent

variable methods.

For a measurable space (Θ,B), the Dirichlet process (DP), (Ferguson, 1973, 1974)

specifies random distributions on Θ denoted by DP (νG0) where ν > 0 is a scalar

precision parameter and G0 a specified base distribution defined on (Θ,B). A random

distribution function on (Θ,B) arising from DP (νG0) is almost surely discrete and

admits the representation
∑∞

l=1 ωlδθl
, where δz denotes a point mass at z, ω1 = z1,
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ωl = zl

∏l−1
r=1(1 − zr), l = 2,3,..., with zr, r = 1,2,..., independently and identically

distributed as Beta(1, ν). The θl’s are independent and identically distributed as G0

and also independent of the zr’s, l = 1, 2, ... (Sethuraman, 1994). In this notation, θl is

assumed to be scalar or perhaps vector valued, the latter case leading to a multivariate

DP.

To model YD ≡ {Y (s) : s ∈ D}, following Gelfand et al. (2005), one can con-

ceptually extend θl to a realization of a random field by replacing it with θl,D =

{θl(s) : s ∈ D}. For instance, G0 might be a stationary GP with each θl,D being a

realization from G0, i.e., a surface over D. The resulting random process or distri-

bution, G, for YD is denoted by
∑∞

l=1 ωlδθl,D
and the construction is referred to as a

spatial Dirichlet process (SDP) model. The interpretation is that for s(n) as above, G

induces a random probability measure G(s(n)) on the space of distribution functions for

{Y (s1), ..., Y (sn)}. (To simplify notation, we will use G(n) instead of G(s(n)) in what

follows.) Thus, we have that G(n) ∼ DP (νG
(n)
0 ), where G

(n)
0 ≡ G

(s(n))
0 is the n-variate

distribution for {Y (s1), ..., Y (sn)} induced by G0. E.g., G
(n)
0 is an n-variate normal if

G0 is taken to be a GP).

Gelfand et al. note a connection between the spatial DP above and the notion of

a dependent Dirichlet process (DDP) as developed by MacEachern (2000). The DDP

provides a formal framework within which to describe a stochastic process of random

distributions. These distributions are dependent but such that, at each index value, the

distribution is a univariate DP. In the above setting, G induces a random distribution

G(Y (s)) for each s, hence the set GD ≡ {G(Y (s)) : s ∈ D} which, under sufficient

conditions (MacEachern, 2000, Theorem 3.1) will be a DDP.

For a stationary G0 (i.e., cov{θl(si), θl(sj)} depends upon si and sj through si−sj),

the choice of the covariance function determines how smooth process realizations are.

Kent (1989), for instance, shows that, if the covariance function admits a second order
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Taylor-series expansion with remainder that goes to 0 at a rate of 2 + δ for some

δ > 0 then θ(si) − θ(sj) → 0, almost surely, as ||si − sj|| → 0. But then, in the

representation ofG as
∑

ωlδθl,D
, the continuity of θl,D implies that the random marginal

distribution of Y (si) given G, G(Y (si)), and the random marginal distribution of Y (sj)

given G, G(Y (sj)), are such that the difference between them tends to 0 almost surely,

as ||si − sj|| → 0. The implication is that we can learn about G(Y (s)) more from data

at neighboring locations than from data at locations further away, as in usual spatial

prediction.

For G arising from G0 and ν, note that given G, E {Y (s) | G} =
∑

ωlθl(s) and

var {Y (s) | G} =
∑

ωlθ
2
l (s)− {

∑

ωlθl(s)}
2. Moreover for a pair of sites si and sj,

cov {Y (si), Y (sj) | G} =
∑

ωlθl(si)θl(sj) −
{

∑

ωlθl(si)
}{

∑

ωlθl(sj)
}

. (1)

Hence, the random process G has heterogeneous variance and is nonstationary. If G0

is a mean zero stationary GP with variance σ2 and correlation function ρφ(si − sj),

where the (possibly vector valued) parameter φ specifies ρφ(·), then, marginalizing over

G, E{Y (s)} = 0, var{Y (s)} = σ2 and cov{Y (si), Y (sj)} = σ2ρφ(si − sj). That is, G

is centered around a stationary process with constant variance but it has nonconstant

variance and is nonstationary. Also, with almost surely continuous process realiza-

tions, (1) makes it clear that the SDP is mean square continuous. That is, given G,

lim||s−s′||→0E[{Y (s) − Y (s′)}2 |G] = 0.

Since the almost sure discreteness of G will be undesirable in practice, mixing a pure

error process with variance τ 2 with respect to G creates a random process F which has

continuous support. If θD given G is a realization from G and YD − θD is a realization

from the pure error process, then, operating formally, we find that, marginally, YD

arises from the process F which can be defined as the convolution

F
(

YD | G, τ 2
)

=

∫

K
(

YD − θD | τ 2
)

G (dθD) .
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Differentiating to densities,

f
(

YD | G, τ 2
)

=

∫

k
(

YD − θD | τ 2
)

G (dθD) . (2)

Here K and k denote the joint distribution function and density function, respectively,

of the pure error process over D. k might denote a N(0, 1) or tr(0, 1) density. Hence for

any s, f (Y (s) | G, τ 2) =
∫

k (Y (s) − θ(s) | τ 2)G (dθ(s)). In other words, Y (s) = θ(s)

+ ǫ(s) where θ(s) arises from the above spatial DP prior model and ǫ(s) is N(0, τ 2). The

customary partitioning into a spatial component and a pure error or nugget component

results. The process model is created by convolving distributions rather than convolving

process variables as in Higdon et al. (1999) or Fuentes & Smith (2001).

For the finite set of locations s(n) = (s1, ..., sn), (2) implies that the joint density of

Y = {Y (s1), ..., Y (sn)}T , given G(n) (where G(n) ∼ DP (νG
(n)
0 )) and τ 2, is

f
(

Y | G(n), τ 2
)

=

∫

Nn

(

Y | θ, τ 2In
)

G(n) (dθ) , (3)

where, to simplify notation, θ ≡ θ(s(n)) = {θ(s1), ..., θ(sn)}T and Np(· | λ,Σ) denotes

the p-variate normal density/distribution (depending on the context) with mean vector

λ and covariance matrix Σ. Again, the almost sure representation of G(n) as
∑

ωlδθl
,

where θl is the vector {θl(s1), ..., θl(sn)}T , yields that f(Y | G(n), τ 2) is almost surely

of the form
∑∞

l=1 ωlNn(Y | θl, τ
2In), i.e. a countable location mixture of normals. In

fact, assuming the existence of expectations given G(n) and τ 2, one can obtain that

E(Y | G(n), τ 2) =
∑

ωlθl and the covariance matrix ΣY | G(n), τ 2 = τ 2In + Σ
(s(n))
θ ,

where (Σ
(s(n))
θ )i,j = cov{θ(si), θ(sj) | G

(n)} the covariance arising from (1).

A regression term, XTβ, would typically be added to the kernel of the mixture

model in (3) leading to

f
(

Y | G(n), β, τ 2
)

=

∫

Nn

(

Y | XTβ + θ, τ 2In
)

G(n) (dθ) . (4)
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That is, E(Y | G(n), β, τ 2) = XTβ +
∑

ωlθl where X is a p×n matrix and β is a p× 1

vector of regression coefficients.

Consider the data Yt = {Yt(s1), ..., Yt(sn)}T with associated Xt, t = 1,...,T . Given

Xt, the Yt are assumed independent from f(Yt | G
(n), β, τ 2) as in (4). A DP prior is

placed on G(n), i.e., G(n) ∼ DP (νG
(n)
0 ) (induced by the spatial DP prior for G in (2)),

with G
(n)
0 being a multivariate normal with mean zero and covariance matrix σ2Hn(φ).

The full Bayesian model is completed by placing (independent) priors on β, τ 2, ν, σ2

and φ. Associating with each Yt a θt = {θt(s1), ..., θt(sn)}T where the θt, t = 1,...,T are

independent realizations from G(n), the following semiparametric hierarchical model

emerges

Yt | θt, β, τ
2 ∼ Nn(Yt | X

T
t β + θt, τ

2In), t = 1, ..., T

θt | G
(n) ∼ G(n), t = 1, ..., T

G(n) | ν, σ2, φ ∼ DP (νG
(n)
0 ); G

(n)
0 (· | σ2, φ) = Nn(· | 0n, σ

2Hn(φ))

β, τ 2 ∼ Np(β | β0,Σβ) × IGamma(τ 2 | aτ , bτ )

ν, σ2, φ ∼ Gamma(ν | aν , bν) × IGamma(σ2 | aσ, bσ) × [φ],

(5)

where [φ] indicates a convenient prior distribution for φ, according to the bracket

notation of Gelfand & Smith (1990).

3 The Generalized Spatial Dirichlet Process Model

In subsection 3.1 we formally develop the GSDP model. In subsection 3.2 we employ

this model as a mixing distribution, mixing against a Gaussian kernel.

3.1 Model details

In the spatial Dirichlet Process developed by Gelfand et al. (2005), the random distri-

bution of the pure spatial effect is essentially a Dirichlet Process defined on the space
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of the random surfaces over D generated by a mean 0 base spatial process. Then the

almost sure characterization of the process implies that the random G for s is not the

same as that for s′ since {θ∗l (s)} is not the same as {θ∗l (s
′)}. However, each distribution

has the same set of random stick-breaking probabilities. Indeed, for any group of n

locations, the joint distribution uses the same set of stick-breaking probabilities induc-

ing common surface selection for all locations in the group. The spatial dependence is

introduced only through the underlying base measure, and it is not possible to capture

the situation in which spatial effects can be selected from different surfaces at different

locations. This limitation of the SDP is common to other recent work relating to the

so-called dependent Dirichlet process (MacEachern, 2000). See, for example, De Iorio

et al. (2004).

We introduce a random distribution for the spatial effects that allows different finite

dimensional distributions across locations in the sense that surface selection can vary

with location and that the joint selection of surfaces for the n locations can vary with

the choice of locations. Moreover, we still preserve the property that the marginal

distribution at each location comes from a usual univariate Dirichlet Process. This

is achieved constructively, defining a new multivariate stick-breaking prior in which

spatial dependence structure is also introduced in the modeling of the weights. See

Ishwaran & Zarepour, 2002b for a review of stick-breaking univariate priors.

Accordingly, we start by considering a base random field G0, which, for convenience,

we take to be stationary and Gaussian, and indicate with θ∗l = {θ∗l (s), s ∈ D} a

realization from G0, i.e., a surface over D. Then we define a random probability

measure G on the space of surfaces over D as that measure whose finite dimensional

distributions almost surely have the following representation: for any set of locations
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(s1, . . . , sn) ∈ D, and any collection of sets {A1, . . . , An} in B(R),

pr{Y (s1) ∈ A1, . . . , Y (sn) ∈ An} =
∞
∑

i1=1

...

∞
∑

in=1

pi1,...,in δθ∗i1 (s1)(A1) . . . δθ∗in (sn)(An),

(6)

where the θ∗j ’s are independent and identically distributed as G0, ij is an abbreviation

for i(sj), j = 1, 2, . . . , n, and the weights {pi1,...,in}, conditionally on the locations,

have a distribution defined on the infinite dimensional simplex P = {pi1,...,in ≥ 0 :

∑∞
i1=1 ...

∑∞
in=1 pii,...,in = 1}. Following customary assumptions in Dirichlet process

specification, the {pi1,...,in} arise from a spatial process described below, independent

of that for the θ′s.

The generalization of the usual Dirichlet process setting is apparent and it is evident

that we allow the possibility to choose different surfaces at different locations. We will

return to this point later in the section. For now, it will be enough to notice that the

weights need to satisfy a consistency condition in order to properly define a random

process for Y (·). Specifically, we need that for any set of locations (s1, . . . , sn), n ∈ N

and for all k ∈ {1, . . . , n},

pi1,...,ik−1,ik+1,...,in = pi1,...,ik−1,·,ik+1,...,in ≡
∞
∑

j=1

pi1,...,ik−1,j,ik+1,...,in . (7)

In addition, we insist that the weights satisfy a continuity property; we want the random

laws associated with locations s1 and s2 near to each other to be similar. Equivalently,

for locations s and s0, as s → s0, pi1,i2 = pr{Y (s) = θ∗i1(s), Y (s0) = θ∗i2(s0)}, tends to

the marginal probability pi2 = pr({Y (s0) = θ∗i2(s0)} when i1 = i2, and to 0 otherwise.

Analogously, if we consider three locations (s1, s2, s3), if s3 is close to say, s2, we require

pi1,i2,i3 to be close to pi1,i2 if i2 = i3 and to 0 otherwise. Extension to n locations is

clear; we avoid introducing further notation, and from now on refer to this property

simply as almost sure continuity of the weights. The name is suggested by the almost

sure continuity of the paths of a univariate spatial process, as defined in Kent (1989)
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or Banerjee et al. (2003). Recall that a univariate spatial process θ(s), s ∈ D is said

to be almost surely continuous at a point s0 if θ(s) → θ(s0) with probability one as

||s − s0|| → 0. We take up an illustrative construction of almost surely continuous

weights in Section 4.2 with associated formal arguments supplied in Appendix I. Now,

if we also assume the random field G0 to be almost surely continuous, we are able to

establish the following proposition whose proof is also given in Appendix I.

Proposition 1 Let {Y (s), s ∈ D} be a random field, whose random finite dimensional

distributions are given by (6) for all n ∈ N. If the set of weights {pi1,...,in} and the base

random field G0 are almost surely continuous, then for all s0 ∈ D, Y (s) converges

weakly to Y (s0) with probability one as ||s− s0|| → 0.

In fact, the proof demonstrates almost sure convergence of the random probability

measures. Note that Proposition 1 is an extension to our case of analogous results

stated in MacEachern (2000) and Gelfand et al. (2005).

Conditionally on the realized distribution G, the process has first and second mo-

ments given by

E{Y (s)|G} =
∞
∑

l=1

pl(s) θ
∗
i (s) (8)

var{Y (s)|G} =
∞
∑

l=1

pl(s) θ
∗2

l (s) −
{

∞
∑

l=1

pl θ
∗
l (s)

}2

, (9)

and, for a pair of sites si, sj,

cov{Y (si), Y (sj)|G} =
∞
∑

l=1

∞
∑

m=1

pl,m(si, sj) θ
∗
l (si) θ

∗
m(sj)+

−
{

∞
∑

l=1

pl(si) θ
∗
l (si)

}{

∞
∑

m=1

pm(sj) θ
∗
m(sj)

}

.

(10)

The latter result generalizes (1) above from Gelfand et al. Also, analogous to the case

for the SDP, (10) shows that with almost surely continuous realizations from the base

process and of the weights, the GSDP is mean square continuous.
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Again, the process Y (s) has heterogeneous variance and is nonstationary. However,

when we marginalize over G, we can see more clearly the difference between the models.

Again, suppose G0 is a mean zero stationary Gaussian process with finite variance σ2

and correlation function ρφ(si−sj). Then, E{Y (s)} = 0 and var{Y (s)} = σ2 as before,

but now

cov{Y (si), Y (sj)} = σ2ρφ(si − sj)
∞
∑

l=1

E{pll(si, sj)}. (11)

Notice that
∑∞

l=1E{pll(si, sj)} < 1, unless pll′(si, sj) = 0, l 6= l′, as it is in Gelfand

et al. (2005) or, more generally, in the single-p dependent Dirichlet process discussed

by MacEachern (2000). We can interpret this limiting situation as the one of maximum

concordance among the surfaces chosen at the two locations. In all other cases, the

association structure is diminished by the amount of mass that the process (6) is

expected to place on the not equally indexed θ∗’s. Moreover, from (11) it follows that,

although the base measure G0 is stationary, the process Y(s) is centered around a

stationary process only when E{pll(si, sj)} is a function of si − sj for all si and sj.

We now turn to the specification of pi1,...,in for any choice of n and s1, ..., sn. We

propose a theoretically attractive and computationally feasible approach through a

multivariate extension of the stick-breaking construction that usually characterizes the

univariate Dirichlet process. For the sake of simplicity, we present our approach in a

bivariate setting, considering the random measure (6) for a pair of sites si, sj, providing

details on extension to the general multivariate case when necessary. First, we define

a convenient process which retains the same Dirichlet process structure marginally at

each site and then we move to a more general setting.

We start by recalling that in the Sethuraman’s univariate stick-breaking construc-

tion the random measure
∑∞

l=1 plδθ∗
l

has weights pl defined by p1 = q1, pl = ql
∏l

m=1(1−

qm), l ≥ 2 where, for all l ≥ 1, ql are independent Beta(1, ν) random variables also in-
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dependent of θl. Any realization of such a measure has evidently support on the set of

realized θ∗l ’s, l = 1, 2, . . .. Then, it is immediate to define the random events {Y = θ∗l },

denoted by Θ1
l , as elements of the σ-algebra of the space on which the θ∗l ’s take values,

together with their complements Θ0
l , and interpret the sequence of weights {p1, p2, . . .}

as arising from q1 = pr(Θ1
l ), ql = pr(Θ1

l |Θ
0
m,m < l) = pr(Y = θ∗l |Y 6= θ∗m,m < l),

l = 1, 2, . . .. Turning back to our model, at each location s we can define events

Θu
l (s), u = 0, 1, such that Θ1

l (s) = {Y (s) = θ∗l (s)} and Θ0
l (s) = {Y (s) 6= θ∗l (s)}.

Then, for any two locations si, sj, we can consider the probabilities q1,u,v(si, sj) =

pr{Θu
1(si),Θ

v
1(sj)}, ql,u,v(si, sj) = pr{Θu

l (si),Θ
v
l (sj)|Θ

0
m(si),Θ

0
m(sj),m < l}, l ≥ 2,

u, v ∈ {0, 1}. For all l = 1, 2, . . ., we can enter these probabilities in the form of Ta-

ble 1. Note that, formally, e.g., ql,1,1(si, sj) + ql,1,0(si, sj) = ql,1,+(si, sj) and we need

to argue that ql,1,+(si, sj) = ql(si). Similarly, ql,+,1(si, sj) = ql(sj). The argument is

supplied in Appendix I as Lemma 1. Then, accordingly, we can define the weights in

(6) as

plm = pr{Y (si) = θ∗l (si), Y (sj) = θ∗m(sj)}

= pr{Θ1
l (si),Θ

1
m(sj),Θ

0
k(si), k < l,Θ0

r(sj), r < m}

=































∏l−1
k=1 qk,0,0 ql,1,0

∏m−1
r=l+1(1 − qr) qm if l < m

∏m−1
r=1 qr,0,0 qm,0,1

∏l−1
k=m+1(1 − qk) ql if m < l

∏l−1
r=1 qr,00 ql,11 if l = m

,

(12)

where we have suppressed si and sj. Although not immediate, close inspection of

expression (12) reveals that the weights are determined through a partition of the unit

square similar to the one induced on the unit segment by the usual stick-breaking

construction, so that indeed the former can be considered as a bivariate extension of

the latter. We can see this clearly from the illustration in Figure 1. At the first stage,

if both the events Θ1
1(si) and Θ1

1(sj) are true, we break off a region of the unit square
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of the same size as the realized value of q1,1,1(si, sj). This is region A in Figure 1. If

only Θ1
1(si) (or Θ1

1(sj)) is true, we remain only with a piece corresponding to region B

(D). In fact, given Θ1
1(si) (Θ1

1(sj)), we go on with a univariate stick-breaking procedure

so that we break off a part of region B (C) according to the values of ql(sj) (ql(si)),

l = 2, 3, . . .. If neither Θ1
1(si) nor Θ1

1(sj) are true, then we discard all regions A, B, and

D and remain only with region C, whose size is determined by q1,0,0(si, sj). Then, at

stage two, we repeat the same arguments as above for region C, and so on (see Figure

1).

Following the same steps, the preceding arguments can be easily extended for the

n-locations problem to define an n-dimensional stick breaking construction on the unit

n-dimensional hypercube.

The construction relies on the specification of probabilities ql,u1,...,un
, uj ∈ {0, 1}, j =

1, 2, . . . , n, where uj is an abbreviation for u(sj), at any set of locations (s1, . . . , sn).

This is generally difficult, since it entails defining a spatial process which, conditionally

on the locations, has values on the simplex Q = {ql,u1,...,un
≥ 0 :

∑1
u1,...,un=0 ql,u1,...,un

=

1}, and also satisfies consistency conditions of the type (7) for all l = 1, 2, . . . and any

set of locations (s1, . . . , sn), n ∈ N and for all k = 1, . . . , n, that is

ql,u1,...,uk−1,uk+1,...,un
= ql,u1,...,uk−1,·,uk+1,...,un

≡

1
∑

uk=0

ql,u1,...,uk−1,uk,uk+1,...,un
.

However, in the next section, we offer a flexible construction under which this can be

done consistently. For the remainder of this section, as a special case, suppose the

process retains the same marginal distribution at each location. Referring to Table

1, this can be achieved by imposing ql(s) = ql, together with the symmetry condi-

tion ql,1,0(si, sj) = pr{Y (si) = θ∗l (si), Y (sj) 6= θ∗l (sj)} = pr{Y (si) 6= θ∗l (si), Y (sj) =

θ∗l (sj)} = ql,0,1(si, sj), for all l = 1, 2 . . . and s ∈ D. But, given ql, if we can compute

say ql,1,1(si, sj) as a function of ql, the remainder of the table is determined. Then, ac-
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cording to Sethuraman’s construction, if we allow ql to be Beta(1, ν), we get a process

which marginally is a Dirichlet process with precision parameter ν and base measure

G0. Together with (12), this illuminates the role of the distribution of the q’s in speci-

fying the dependence structure in a multivariate Dirichlet process.

Notice that there are other ways to achieve this particular result. For example, we

might consider a process such that each ql given ql,0,0 has a Beta-Stacy distribution with

parameters 1, ν − 1, 1− ql,0,0. If ql,0,0 is assumed to be Beta(1, ν), then ql is Beta(1, ν).

The model we present in section 4 offers an alternative spatially-explicit way to specify

ql and ql,1,1. For the n-dimensional case, symmetry conditions similar to the one stated

above must be assumed in order to obtain the same marginal behaviour at each site.

Modelling the marginals to be Dirichlet processes allows direct comparison with

the models described by Gelfand et al. (2005) and De Iorio et al. (2004). However,

it is worth noting that, though we employ a generalized stick-breaking construction

and achieve DP marginal distributions, our model doesn’t generally describe a joint

Dirichlet Process for a collection of locations. In particular, it follows that, given the

dependence between the θ∗’s in the sum representation (6), we are not able to trace a

joint urn scheme, but only a marginal one. The SDP model described in Gelfand et al.

(2005) stands as a particular case of the model described here, where in Table 1 we set

ql,0,1 = ql,1,0 = 0 and ql,1,1 = ql for all locations and for all l.

We can see the generalization from the SDP model also by looking at the random

conditional distribution associated with Y (si)|Y (sj) for any pair of locations si, sj. In

fact, in the SDP this is just a random indicator function. In our model, it turns out to

be another random measure. In fact, the random distribution Y (si)|Y (sj) = θ∗m(sj) is
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discrete with probability one and of the form
∑∞

l=1 pl|m(si, sj)δθ∗
l
(si), where

pl|m(si, sj) = pr(Y (si) = θ∗l (si)|Y (sj) = θ∗m(sj)) =

=
plm(si, sj)

∏m−1
k=1 {1 − qk(sj)} qm(sj)

,
(13)

since
∑

l pl,m(si, sj) = pm(sj) due to marginal stick-breaking. But, substituting the

expressions in (12),

pl|m =































∏l−1
k=1

qk,0,0

(1−qk)

ql,1,0

1−ql
if l < m

∏m−1
k=1

qk,0,0

(1−qk)

qm,0,1

qm

∏l−1
k=m+1(1 − qk) ql if m < l

∏l−1
k=1

qk,0,0

(1−qk)

ql,1,1

ql
if l = m.

(14)

If we proceed along the lines that lead us to (12), we can show that for any given

m, based on conditional reasoning, (14) defines a stick-breaking partition of the unit

segment. However, this is not obtained through the usual Beta(1, ν) random variables,

even if the process is marginally Dirichlet. In fact, the random measure arising from

(14) can be seen as a generalized Dirichlet process, in the spirit of the more general

definitions of Hjort (2000) and Ishwaran & James (2001).

As a final remark, notice that defining a stick-breaking construction does not neces-

sarily ensure that the random weights sum to one with probability one. This depends

on the distribution of the weights. In the context of univariate stick-breaking priors,

however, it is possible to provide a necessary and sufficient condition for that to hap-

pen (see Lemma 1 in Ishwaran & James (2001)). We can expect that this condition

holds for our model too, as long as we marginally get a DP prior (or, more in general,

a stick-breaking prior). The precise argument is a direct extension of the result of

Ishwaran and James and is developed for the bivariate case in Appendix I as Lemma

2. Extension to the general n-dimensional case is again straightforward.
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3.2 Mixing using a Generalized Spatial Dirichlet Process.

Following Gelfand et al. (Gelfand et al. (2005)), as in Section 2, the GSDP will be

used to model the distribution of the spatial component θ(s) in a random effect model

of the type

Y (s) = µ(s) + θ(s) + ε(s),

where µ(s) is a constant mean term, typically assumed to be a regression term X(s)Tβ

for some vector of covariates X(s) and some vector of parameters β, and ε(s) is a pure

error (nugget) component with mean zero and variance τ 2. If θ(·) follows the GSDP

as above, we can provide analogues of expressions (3) and (4). Again, if we denote by

G(n) the finite dimensional distributions defined by (6), for any finite set of locations

s(n) = (s1, . . . , sn), n ∈ N, the joint distribution of Y = {Y (s1), . . . , Y (sn)}T , given

G(n), µ and τ 2 is given by F
(

y|G(n), µ, τ 2
)

=
∫

Nn (y| θ + µ, τ 2In) G(n)(dθ), where

θ = {θ(s1), . . . , θ(sn)}T , µ = {µ(s1), . . . , µ(sn)}T . Again, differentiating to densities,

f
(

y|G(n), µ, τ 2
)

=

∫

Nn

(

y| θ + µ, τ 2In
)

G(n)(dθ). (15)

As with the SDP, since G(n) is almost surely discrete, with probability one the condi-

tional density (15) can be rewritten as a countable location mixture of normals,

f
(

Y |G(n), µ, τ 2
)

=
∞
∑

i1=1

...

∞
∑

in=1

pi1,...,inNn(Y | θi1,...,in + µ, τ 2In), (16)

where, for simplicity, we have suppressed the locations in pi1,...,in and set the vec-

tor θi1,...,in = {θi1(s1), . . . , θin(sn)}T . Computation of the moments of this distri-

bution is immediate. Y is a random vector which with probability one has den-

sity absolutely continuous with respect to the Lebesgue measure on (Rn,B(Rn)), ex-

pected value E(Y |G(n), µ, τ 2) =
∑∞

i1=1 ...
∑∞

in=1 pi1,...,inθi1,...,in+µ, and covariance matrix

ΣY |G
(n), µ, τ 2 = τ 2 In + Σs

θ, where (Σs
θ)i,j = cov

{

θ(si), θ(sj)|G
(n)
}

is given by (10).
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Under the assumptions of Proposition 1, if, in addition, the mean vector µ describes

a continuous surface over D, it is easy to prove that an analogous statement holds

for the convolved process Y . In fact, the normal density is a bounded continuous

function of the mean. Then the bounded convergence theorem applies to (15), and

together with almost sure convergence of the random probability measures G(n) proved

in Proposition 1, this implies that, with probability 1, Y (s) converges weakly to Y (s0)

for any s, s0 ∈ D, as ||s− s0|| → 0.

4 The Spatially Varying Probabilities Model

In this section we discuss how to specify the stick-breaking components in a way that

is appealing for modelling purposes and ensures the existence of the processes sampled

from G. In particular, our constructive approach is through latent variables. In the

implementation, using MCMC, we never sample or even estimate the q’s or p’s. We

conclude this section with a discussion that distinguishes our approach from that of

Griffin & Steel (2004).

Recalling the notation of Section 3.1, for any n = 1, 2, . . . and any l = 1, 2, . . .

the stick-breaking components ql,u1,...,un
(s1, . . . , sn), uj ∈ {0, 1}, j = 1, 2, . . . , n arise

through probabilities associated with the events Θ
uj

l (sj), l = 1, 2, . . .. Therefore, it is

possible to assign a distribution to the stick-breaking components directly by specifying

a law for these events. In particular, we can consider the process {δΘ1
l
(s), s ∈ D, l =

1, 2, . . . , }, such that at any l = 1, 2, . . .,

δΘ1
l
(s) = 1 if Θ1

l (s) occurs

δΘ1
l
(s) = 0 if Θ1

l (s) does not occur.

In particular, suppose Θ1
l (s) occurs if and only if Zl(s) ∈ Al(s). Then, we can work
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with the equivalent stochastic process {δ∗Al(s)
, s ∈ D, l = 1, 2, . . .} defined by

δ∗Al(s)
= 1 if Zl(s) ∈ Al(s)

δ∗Al(s)
= 0 if Zl(s) 6∈ Al(s),

where {Zl(s), s ∈ D, l = 1, 2, . . .} is a latent random field. Furthermore, we can write

ql,u1,...,un
(s1, . . . , sn) = pr{δΘ1

l
(s1) = u1, . . . , δΘ1

l
(sn) = un| δΘ1

i (sj) = 0, i < l, j = 1, . . . , n}

= pr{δ∗Al(s1) = u1, . . . , δ
∗
Al(sn) = un| δ

∗
Ai(sj)

= 0, i < l, j = 1, . . . , n}.

It is easy to see that such a characterization guarantees that (7) is true, hence the

existence of the processes sampled from the random distribution (6).

In the following we assume that {Zl(s), s ∈ D, l = 1, 2, . . .} is a countable col-

lection of independent stationary Gaussian random fields on D having variance 1 and

correlation function ρZ(·, η). We further assume that the mean of the lth process, say

µl(s), is unknown and we put a convenient prior on it, so that the distribution of Zl(s)

(and hence of the ql’s) can be viewed as random. We also choose Al(s) = {Zl(s) ≥ 0}.

With these assumptions, it follows that

ql,u1,...,un
(s1, . . . , sn) = pr{δ∗{Zl(s1)≥0} = u1, . . . , δ

∗
{Zl(sn)≥0} = un|µl(s1), . . . , µl(sn)},

because of the independence of the processes {Zl(s)} over the index l. For example,

for n = 2, we get ql,0,1 = pr{Zl(s1) < 0, Zl(s2) ≥ 0|µl(s1), µl(s2)}. If the µl(s) surfaces

are independent, l = 1, 2, ..., then also the ql,u1,...,un
(s1, . . . , sn)’s are.

Since Zl(s) is assumed to be Gaussian, at any location s we get

ql,1(s) = pr{Zl(s) ≥ 0} = 1 − Φ {−µl(s)} = Φ {µl(s)} , (17)

where Φ(·) denotes the univariate standard normal distribution function. If the µl(s)

are such that the Φ{µl(s)} are independent Be(1, ν), l = 1, 2, . . ., then for each s, the
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marginal distribution of θ(s) is a DP with probabilities that vary with location. In

the special case that µl(s) = µl, for all s, with Φ(µl) independent Be(1, ν) then, again

marginally, the θ(s) follow a DP where the marginal weights are same for each s but

the marginal distributions are not the same since θ∗l (s) 6= θ∗l (s
′).

Marginal reduction to a DP is not necessary for the definition of the GSDP (al-

though it can be useful for purposes of comparison with the SDP or other competing

approaches). For instance, if we retain the µl(s), then, since we would like to encourage

Zl(s) to resemble Zl(s
′) when s is close to s′, we could take µl(s) to be a realization of

say a Gaussian spatial process rather than say independent as above.

We have described the construction of a flexible model for the spatial random effects

θ(s) in order that they can come from different random spatial surfaces at different

locations. Following the discussion above Proposition 1, we require two properties

for this construction: (i) the random finite dimensional distribution G(n) satisfies the

Kolmogorov consistency condition and (ii) the continuity property should be satisfied,

that is, if location s is near s′, we want the probability of picking up the same sample

surface for s and s′ to be high.

To recapitulate, we will never actually calculate the random weights pi1,...,in . Rather,

as is frequently done in hierarchical modeling, we have introduced latent variables, in

this case a countable collection of independent Gaussian process realizations. And we

let

pi1,...,in = pr
[

Z1(s1) < 0, . . . , Zi1−1(s1) < 0, Zi1(s1) ≥ 0;

Z1(s2) < 0, . . . , Zi2−1(s2) < 0, Zi2(s2) ≥ 0; . . . ;

Z1(sn) < 0, . . . , Zin−1(sn) < 0, Zin(sn) ≥ 0|{µl(si)}
]

,

(18)

In Propositions 2 and 3 of the Appendix we prove that the construction above satisfies

the Kolmogorov consistency and the continuity conditions.
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Finally, spatially varying weights have recently been considered by Griffin & Steel

(2004), who work in the framework of dependent Dirichlet processes. They proceed

from the assumption that the distribution of aDP (ν G0) is unaffected by a permutation

of the atoms {θ∗l (·), ql(·), l = 1, 2, . . .} in Sethuraman’s constructive representation.

Then, if {π(s), s ∈ D} is a process of permutations of the set of integers {1, 2, . . .}, it

is possible to define an order-based dependent stick-breaking prior over D, abbreviated

πDDP as a process {Fπ(s), s ∈ D}, such that at any s ∈ D, given a realization of the

process π(s), Fπ(s) =
∑∞

l=1 pl(s) δθl(s), where pl(s) = qπl(s)

∏

j<l

{

1 − qπj(s)

}

.

With regard to surface selection, the difference between their approach and ours

is as follows. We define a joint random distribution for any grouping of the locations

(s1, . . . , sn), n = 1, 2, . . . and the probabilities of picking up the different surfaces are

directly assigned. For instance, for n=2 and any integers l and m, we have seen that

pr {Y (si) = θ∗l (si), Y (sj) = θ∗m(sj)} = pl,m(si, sj). For Griffin and Steel’s πDDP , this

probability is given by

pr {Y (si) = θ∗l (si), Y (sj) = θ∗m(sj)} =

∫

pl(si) pm(sj) dH(π(si), π(sj)),

that is, as the expected value of the marginal probabilities with respect to the dis-

tribution of the permutation field at the two locations. By the definition of πDDP ,

it follows that the dependence among the marginal random distribution functions is

directly deduced by the permutation at each s. In particular, this is given by means

of an auxiliary latent point process Z. In fact, Griffin and Steel first associate each

atom {θ∗i (s), qi} with a realization zi from Z, for i = 1, 2, . . .. Then, at any s, the

πDDP is defined permuting the set of q′s according to the realizations of the latent

point process Z. In fact, π(s) is defined to satisfy ||s − zπ1(s)|| < ||s − zπ2(s)|| < . . ..

It follows that a realization from this process will necessarily be the same for some

regions of D, while allowing different stick-breaking constructions for points far apart
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from each other. However, the representation at any s depends on how the process Z

is associated with the atoms of the process, so that the representation does not seem

to be invariant to a reordering of the z’s. Moreover, for practical purposes it can be

difficult to model the type of dependence induced by the point process mechanism,

unless we choose simple processes, such as a stationary Poisson process. On the other

hand, in our approach the spatial behavior of the stick-breaking components depends

on the distribution of the latent Gaussian process Z and can vary across locations if

this is true for the mean of Z.

5 Simulation Based Model fitting for the GSDP

Assembling Sections 3 and 4, we work with the following spatial model. Let the vec-

tors Yt = {Yt(s1), Yt(s2), . . . , Yt(sn)}T
, t = 1, . . . , T indicate T groups of independent

observations collected at the same set of locations (s1, . . . sn) ∈ D ⊂ R2. The mean

surface µ (s) , s ∈ D is modelled by a linear regression µ (s) = x(si)
Tβ. The spatial

random effect θ(s), s ∈ D has the nonparametric rule as defined in Section 4. The

24



overall model has the following hierarchical structure

Yt | θt, β, τ
2 ∼Nn(Yt | X

T
t β + θt, τ

2In), t = 1, ..., T

θt | G
(n) ∼G(n), t = 1, ..., T

G(n) | pi1,...,in , θ
∗
l =

∞
∑

i1,...,in=1

pi1,...,in δθ∗i1 (s1)(·) · · · δθ∗in (sn)(·), l = 1, 2, . . .

pi1,...,in = pr {Z1(sl) < 0, . . . , Zil(sl) ≥ 0, l = 1, . . . , n} , ij = 1, 2, . . . , j = 1, 2, . . . , n.

{θ∗l (s1) , . . . θ
∗
l (sn)}T ∼Nn

(

0, σ2Rn (φ)
)

, l = 1, 2, . . .

{Zt,l(s1), . . . , Zt,l(sn)}T ∼Nn (µl1n, Hn (η)) , l = 1, 2, . . . , t = 1, 2, ...T

µl s.t. Φ (µl) ∼Beta(1, ν), l = 1, 2, . . .

β, τ 2 ∼Np(β | β0,Σβ) × IGamma(τ 2 | aτ , bτ )

σ2, φ, η ∼ IGamma(σ2 | aσ, bσ) × [φ] × [η] ,

(19)

The priors for φ and η depend on the specific form of covariance structure of Rn (φ)

and Hn (η). For convenience, in our examples we have set ν = 1. In the more general

version, we have µl(s) replacing µl and, for each l, we obtain a realization from a

Gaussian process with mean 0 and stationary covariance function C(·, ψ). In either

case, the replications across t enable us to learn about the µl or the process driving the

µl(s).

Although the marginal random distribution at an individual location s follows a

Dirichlet process, the joint random distribution G(n) does not. The traditional method

of marginalizing over G(n) so that the θt, t = 1, . . . T follow a Polya urn scheme can

not be used in this case. Instead, we approximate G(n) with a finite sum

G
(n)
K =

∑

(i1,...,in)∈{1,2,...,K}n

pi1,...,in δθ∗i1 (s1)(·) δθ∗i2 (s2)(·) . . . δθ∗in (sn)(·), (20)

for K suitably large. In this finite mixture model, we only need θ∗l , l = 1, . . . , K and
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Zl, l = 1, . . . , K − 1. Note that pK (s) = pr {Z1(s) < 0, . . . , ZK−1(s) < 0}.

Recalling remarks in Section 4, actual computation of the weights pi1,...,in in (20) is

very difficult because it involves evaluation of multivariate normal cdf’s. It is avoided

if we sample and use the latent variables Zl’s directly. We eliminate the sampling of

the conditional distribution [θt|G
(n)
K ] by referring to the following equivalent structure:

θt(s) = θ∗1(s)I{Z1
t (s)≥0} + θ∗2(s)I{Z1

t (s)<0,Z2
t (s)≥0} + . . .+ θ∗K(s)I{Z1

t (s)<0,...,ZK−1
t (s)<0}. (21)

In equation (21), θt(s) is a deterministic function of θ∗l (s); l = 1, . . . , K and Z l
t (s) ; l =

1, . . . , K − 1. We rewrite the first stage of the hierarchical model as [Yt|µ, θt] =

[Yt|µ, θ
∗, Zt]. Then, the likelihood function for Yt can be expressed as

[Yt|µ, θ
∗, Zt] ∝ exp

[

−
1

2τ 2

n
∑

i=1

{

Yt(si) −XT
t β (si) − θt(si)

}2

]

∝ exp

[

−
1

2τ 2

K
∑

l=1

n
∑

i=1

{

Yt(si) −XT
t β (si) − θ∗l (si)

}2
I
{Z1

t
(s)<0,...,Z

l−1
t

(s)<0,Zl
t
(s)≥0}

]

∝

n
∏

i=1

(

K
∑

l=1

exp

[

−
1

2τ 2

{

Yt(si) −XT
t β (si) − θ∗l (si)

}2
]

×

× I{Z1
t (s)<0,...,Zl−1

t (s)<0,Zl
t(s)≥0}

)

,

The posterior distributions for the latent variables and parameters are proportional to

this likelihood function multiplied by the priors,

T
∏

t=1

[Yt|θ
∗, Zt, τ

2] ×
K
∏

l=1

[θ∗l |σ
2, φ] ×

T
∏

t=1

K−1
∏

l=1

[Zt,l|µt,l, η] [µt,l]

× [σ2][φ][τ 2][η].

This model can be fitted by a Gibbs sampler. The details of all the full conditional

distributions are given in Appendix II.
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6 Data Illustration

We illustrate the fitting of our model (18) with a simulated data set where we simulate

from a finite mixture model of Gaussian processes that allows different joint multi-

modal distributions for different pairs of locations.

We first simulate a specified number of locations in a given region. They are denoted

as (s1, . . . , sn). Suppose there are T independent replicates {yt (s1) , . . . , yt (sn)} , t =

1, . . . , T sampled from a mixture distribution.

In particular, we proceed as follows. For t = 1, . . . , T , let {θ1
t (s1) , . . . , θ

1
t (sn)}

T
∼

N
(1)
n (−µ1n, σ

2
1Rn (φ1)) and {θ2

t (s1) , . . . , θ
2
t (sn)}

T
∼ N

(2)
n (µ1n, σ

2
2Rn (φ2)) . Also, let

{Zt (s1) , . . . , Zt (sn)}T ∼ Nn (0, Hn (η)). Then, for i = 1, . . . , n, if Zt (si) ≥ 0, we set

yt (si) = θ1
t (si); if Zt (si) < 0, let yt (si) = θ2

t (si).

Each yt (si) has a bimodal distribution of the form 1
2
N (1) (−µ, σ2

1)+
1
2
N (2) (µ, σ2

2). For

two locations si and sj near each other, the strong association between Zt (si) and Zt (sj)

makes yt (si) and yt (sj) very likely to be from the same component N (k) (µk, σ
2
k) , k =

1, 2. If si and sj are distant, the linkage between Zt (si) and Zt (sj) is weak, therefore

the component choices for yt (si) and yt (sj) are almost independent. The joint his-

togram plots in Figure 3 below demonstrate these special properties of our simulation

model.

In our experiment we simulate at 50 design locations in a rectangular area shown in

Figure 2. Notice that some of the locations are numbered for future reference. Then,

40 independent replicates are sampled for these 50 locations. We choose the values of

the parameters as µ1 = −µ2 = 3, σ1 = 2σ2 = 2, φ1 = φ2 = 0.3 and η = 0.3 in the

mixture model above. We fit the model specified in section 5 to this data set. We

approximate G(n) with a finite sum of K = 20 components. To focus on the modelling

of spatial dependence, we fixed the mean structure of {yt (s1) , . . . , yt (sn)} to be zero.
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The Bayesian goodness of fit is illustrated by the posterior predictive densities.

In this example, we show not only the marginal posterior predictive density at each

location, but also the joint posterior predictive densities for two locations. In Figure 3

we plot the posterior predictive density for four randomly selected locations. They are

locations s5, s11, s26, s33. The thick density curves are the predictive densities estimated

from our model. The thin density curves represent the true densities of the model from

which we simulated the data. The +’s mark the values of the 40 observations at each

of these 4 locations.

We select 2 pairs of sites to show the predictive joint densities. The first pair

{y (s50) , y (s23)} are close to each other. The second pair {y (s50) , y (s49)} are distant.

The left most column of plots in Figure 4 show the predictive joint histograms of the

couples {y (s50) , y (s23)} and {y (s50) , y (s49)}. The joint histogram of {y (s50) , y (s23)}

shows two highly correlated sample clouds. The joint histogram of {y (s50) , y (s49)}

shows four less correlated sample clouds. The middle column shows samples from the

true joint densities, while the last column shows the histogram formed from the 40

observations at the two pairs of locations. We can see that, even with a relatively small

sample size, our model reasonably well captures the joint distribution.

Based upon the posterior samples, Figure 5 is the plot of the probability that a

common sample surface is selected for a pair of locations against the distance between

the two locations. We can see the decay in this probability as locations become further

apart.

7 A Spatio-temporal Dynamic Model Version

In Section 5, we assumed the Yt = {yt (s1) , . . . , yt (sn)}T
, t = 1, . . . , T to be indepen-

dent replicates. In practice, these observations are usually made in T consecutive time
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periods, so it is more realistic to model the evolution of the spatial process over time.

In this section we present a version of the spatio-temporal model by embedding the

GSDP in a dynamic linear model. We illustrate this spatio-temporal model also by

fitting it to a simulated data set.

Preserving the notation in (18), the observations at time t can be modelled by the

following dynamic linear model structure:

Yt = XT
t β + θt + εt; εt ∼ N (0, τ 2In)

θt = γθt−1 + ωt; ωt ∼ GSDP (νG0)
(22)

These dynamics yield spatial random effects θt that evolve autoregressively over time

with autocorrelation coefficient, γ (|γ| ≤ 1). Only the second hierarchical specification

in (18) changes to reflect (22). Updating of the full conditional distributions and the

associated MCMC algorithm for the dynamic version is straightforward but careful

attention to bookkeeping is required. We detail it in Appendix II.

We illustrate the model above by with a simulated data set. We still use the region

and the 50 locations given in Figure 2. However, we add 4 new locations (with no

observations) labelled 51-54 where we seek to predict. Also, a simple linear regression

of β0 + β1X (si) is added to the model. X (si) denotes the distance from location si to

a fixed point source represented by the diamond in Figure 2.

The simulated observations {yt (s1) , . . . , yt (sn)}T , t = 1, . . . , T are sampled again

from a mixture of two distributions as follows. Following the specifications from

the previous section, now consider {ω1
t (s1) , . . . , ω

1
t (sn)} ∼ N

(1)
n (−µ1n, σ

2
1Rn (φ1))

and {ω2
t (s1) , . . . , ω

2
t (sn)} ∼ N

(2)
n (µ1n, σ

2
2Rn (φ2)). Also, let {Zt (s1) , . . . , Zt (sn)} ∼

Nn (0, Hn (η)). Then, for i = 1, . . . , n, if Zt (si) ≥ 0, we set θt (si) = γ θt−1 (si)+ω1
t (si);

if Zt (si) < 0, θt (si) = γ θt−1 (si) + ω2
t (si) for i = 1, . . . , n. Then we obtain yt (si) =

β0 + β1X (si) + εt (si), where εt (si) is sampled independently from the normal distri-

bution N (0, τ 2).
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We choose the same values for the parameters of µ1 = −µ2 = 3. σ1 = 2σ2 = 2,

φ1 = φ2 = 0.3 and η = 0.3 as in Section 6. Also, γ is chosen as 0.7, τ 2 is 9. β0 and β1

are 2 and −1 respectively, and T is equal to 40.

In fitting a model to the data, we use the same GSDP for ωt as given in Section 6

with K = 20 components. The Bayesian posterior mean of γ is found to be 0.8 in our

experiment. The Bayesian goodness of fit is again illustrated by the posterior predictive

densities at T + 1. We show not only the marginal posterior predictive density at each

location, but also the joint posterior predictive densities for two locations.

In Figure 6 we plot the posterior predictive density at T +1(= 41) for two locations

with observation (labelled 6 and 12 on Figure 2) and two new locations (labelled 51

and 54 on Figure 2). The thick density curves are the predictive densities estimated

from our model. The thin density curves represent the true densities of the model from

which we simulated the data. The results are interesting in that, despite the small

sample size and the introduction of bimodality only through the innovations at the

second stage, we find bimodal behavior at 6 and 12. Location 51 is not very close to

any of the sampled locations and, in the absence of data, yields a unimodal predictive

density. However, location 54 is very close to sampled locations and, reflecting the

mean square continuity of the GSDP, an indication of two modes emerges.

Turning to bivariate predictive densities, we select 2 pairs of sites to show the pre-

dictive joint density at T +1. The first pair s50, s23 are close to each other. The second

pair s50, s49 are much farther apart. In Figure 7, we provide perspective plots of the

predictive and true joint densities. The first pair reveals a bimodal joint density while

the second pair shows a density with four modes. If one were interested in developing

simultaneous highest posterior density (HPD) confidence sets, one needs to identify

the ”footprint” associated with a level surface of the joint density. In particular, one

must choose the level to provide a specified posterior probability. Of course, these bi-
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variate densities are unavailable analytically so, using the posterior samples, we obtain

a bivariate kernel density estimator. However, since level surfaces associated with this

density estimate are still difficult to obtain, we evaluate the density estimate at the ob-

served samples, providing an ordering for the samples. Then, according to the desired

probability, we choose the density ordinate such that the proportion of the sample with

ordinate above this value is the probability we seek. Figure 8 provides illustrative 80

% (inner curve) and 95 % (outer curve) HPD’s for the site pairs in Figure 7.

8 Discussion and Summary

We have introduced the GSDP as a more flexible successor to the SDP proposed by

Gelfand et al. (2005). However, any multivariate density can be approximated by a

suitable countable mixture of multivariate normal densities. Since, for any finite set

of locations, with probability one the SDP mixture model is such a countable mixture

model, what practical advantages can the GSDP offer over the SDP? Why would we

take the trouble to implement the much more computationally demanding GSDP? For

example, with a bivariate distribution that is the product of two bimodal univariate

distributions, while the GSDP might capture such a distribution using essentially two

components, wouldn’t the SDP be able to do it with four components?

In fact, while, in principle, the SDP can equally well find multiple modes in say a

bivariate distribution, it will have a more difficult time distinguishing the joint distri-

bution for points close to each other from the joint distribution for points far apart. In

other words, in practice, the normal mixture model in (16) can more quickly adapt to

the data than the normal mixture model below (3). Expressed in different terms, in

requiring additional components, the SDP will run into the, a priori, geometrically de-

caying weights, so it may struggle to properly allocate mass to the modes. Furthermore,
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consider the situation where we might have varying numbers of mixing components and

these might vary with spatial location. The version of the GSDP which allows different

marginal distributions at each s is better suited to handle this. In summary, one can

not lose by adopting the more general GSDP and there are circumstances where the

use of the SDP model might require much more data to capture desired features than

the GSDP would require.

Other extensions of the SDP can be envisioned. For instance, in a future manuscript

we will report on the use of the representation of Ishwaran & Zarepour (2002a), The-

orem 3 rather than the Sethuraman representation, to create a different constructive

formulation. Other future investigation will take us to the case of modeling discrete

data, e.g., binary or count data at the first stage with a GSDP to model the spatial

structure in the mean on a transformed scale. We are also interested in the case where

we observe multivariate data at each location. GSDP’s centered around multivariate

spatial process models provide an obvious place to start.
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10 Appendices

We offer two appendices. In Appendix I we provide the arguments for the technical

results concerning the GSDP, given in Sections 3 and 4. In Appendix II, we provide

the full conditional distribution theory needed to fit models incorporating the GSDP.
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Appendix I: Theoretical arguments

Proof of Proposition 1:

Proof. Consider two sites s, s0 in D. According to (6) the joint distribution of the

process is almost surely a realization of the random element

pr{Y (s) ∈ A, Y (s0) ∈ B} =
∞
∑

l=1

∞
∑

m=1

pl,m(s, s0) δθ∗
l
(s)(A) δθ∗m(s0)(B),

for all A,B ∈ B(R). Notice that

lim
||s−s0||→0

pl(s) = lim
||s−s0||→0

∞
∑

m=1

pl,m(s, s0) =
∞
∑

m=1

lim
||s−s0||→0

pl,m(s, s0) = pl(s0),

because of the almost sure continuity property of the weights. The interchange between

limit and sum operations in the equation above follows from the dominated convergence

theorem, since pl,m(s, s0) ≤ pm(s0) for all m. Since 0 ≤ pl(s) δθ∗
l
(s)(A) ≤ pl(s) and

∑∞
l=1 pl(s) = 1 for all s, we can apply Fatou’s Lemma for the series in order to justify

lim
||s−s0||→0

pr{Y (s) ∈ A} = lim
||s−s0||→0

∞
∑

l=1

pl(s) δθ∗
l
(s)(A) =

∞
∑

l=1

pl(s0) δθ∗
l
(s0)(A)

= pr{Y (s0) ∈ A},

which shows the almost sure convergence of the marginal random distributions.

Lemma 1 The probabilities

q1,u,v(si, sj) = pr{Θu
1(si),Θ

v
1(sj)}

ql,u,v(si, sj) = pr{Θu
l (si),Θ

v
l (sj)|Θ

0
m(si),Θ

0
m(sj),m < l}, l ≥ 2,

u, v ∈ {0, 1}, are such that ql,1,+(si, sj) = ql(si) and ql,+,1(si, sj) = ql(sj), for any

l = 1, 2, . . ..

Proof. Recall that

q1,u,v(si, sj) = pr{Θu
1(si),Θ

v
1(sj)}
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ql,u,v(si, sj) = pr{Θu
l (si),Θ

v
l (sj)|Θ

0
m(si),Θ

0
m(sj),m < l}, l ≥ 2, u, v ∈ {0, 1}.

Hence,

ql,1,+(si, sj) = pr{Θu
l (si)|Θ

0
m(si),Θ

0
m(sj),m < l}, l ≥ 2, u, v ∈ {0, 1}.

But Θu
l (si) is independent of {Θ0

m(sj),m < l} given {Θ0
m(si),m < l} by the definition

of stick-breaking. Since ql(si) = pr{Θu
l (si)|Θ

0
m(si),m < l}, we are done.

Lemma 2 For any given si, sj in D,

∞
∑

l=1

∞
∑

m=1

pl,m(si, sj) = 1 if and only if
∞
∑

l=1

E [log{1 − ql(si)}] = −∞. (23)

Proof. Necessity follow after noticing that, if we marginalize with respect to si,

condition (23) reduces to condition (5) in Ishwaran & James (2001). Now, consider for

any N,M = 1, 2, . . ., the remainder term

RN,M(si, sj) = 1 −
N
∑

l=1

M
∑

m=1

pl,m(si, sj),

and assume condition (23) holds. We need to prove that RN,M(si, sj) → 0 with proba-

bility one as N,M → ∞. It’s easy to see that

RN,M(si, sj) =
N
∑

l=1

∞
∑

m=M+1

pl,m(si, sj) +
M
∑

m=1

∞
∑

l=N+1

pl,m(si, sj) +
∞
∑

l=N+1

∞
∑

m=M+1

pl,m(si, sj).

(24)

Since all the terms in the sums are positive, to show RN,M(si, sj) → 0 it is necessary

and sufficient that all the series tend to zero, as N,M → ∞. Then we can work with

each of them separately. Consider the first term in the sum and substitute (12) to all

pl,m(si, sj), so that

N
∑

l=1

∞
∑

m=M+1

pl,m(si, sj) =
N
∑

l=1

l−1
∏

k=1

qk,0,0(si, sj) ql,1,0(si, sj)
∞
∑

m=M+1

m−1
∏

r=l+1

{1 − qr(sj)} qm(sj).

(25)
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Notice that, for any l = 1, 2, . . . , N ,

∞
∑

m=M+1

m−1
∏

r=l+1

{1 − qr(sj)} qm(sj) =

∑∞
m=M+1

∏m−1
r=1 {1 − qr(sj)} qm(sj)

∏l

r=1{1 − qr(sj)}

=

∑∞
m=M+1 pm(sj)

1 −
∑l

m=1 pm(sj)
.

Therefore, if we let M → ∞, the numerator tends to 0, because it is the remainder

of the sum of the weights for the marginal model in sj, and we can refer again to the

result in Ishwaran & James (2001). Then, each term of the series in (25) tends to 0 as

M → ∞. So,

lim
N→∞

lim
M→∞

N
∑

l=1

∞
∑

m=M+1

pl,m(si, sj) = 0.

We can follow a similar argument for the second remainder term in (24). Now

consider
∞
∑

l=N+1

∞
∑

m=M+1

pl,m(si, sj).

Let τ = min(N,M). Then,

∞
∑

l=N+1

∞
∑

m=M+1

pl,m(si, sj) ≤
∞
∑

l=τ+1

∞
∑

m=τ+1

pl,m(si, sj) =
τ
∏

k=1

qk,00(si, sj).

≤
τ
∏

k=1

{1 − qk(si)},

since qk,0,0(si, sj) < 1 − qk(si), k = 1, . . . ,. Then the desired result follows again from

the Lemma 1 in Ishwaran & James (2001) for the marginal model in si.

We next turn to the argument regarding satisfaction of the Kolmogorov consistency

and continuity conditions.

Proposition 2 Let {Y (s1), Y (s2), . . . Y (sn), si ∈ D, i = 1, . . . n} have random finite

dimensional distribution given by (6), for n = 1, 2, . . .. If the set of weights {pi1,...,in}

is defined by means of a latent process as in (18), then the collection of random finite

dimensional distributions define a random field Y (s) on D.
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Proof. First we show that for any l = 1, . . . , n,

pi1,...,il−1,il+1,...in = pi1,...,il−1,·,il+1,...in =
∞
∑

k=1

pi1,...,il−1,k,il+1,...in . (26)

In fact, let Z(si) = {Z1(si), . . . , Zk(si), . . .}, i = 1, . . . , n. Note that if θ(si) =

θ∗k (si), then Z(si) ∈ Si,k, where Si,k = (−∞, 0)1×· · ·× (−∞, 0)k−1× [0,∞)k ×R×· · · .

Therefore, we can rewrite

pi1,...,il−1,il+1,...in = pr
{

Z(s1) ∈ S1,i1 , . . . , Z(sl−1) ∈ Sl−1,il−1
,

Z(sl+1) ∈ Sl+1,il+1
, . . . , Z(sn) ∈ Sn,in

}

and pi1,...,il−1,k,il+1,...in =pr
{

Z(s1) ∈ S1,i1 , . . . , Z(sl−1) ∈ Sl−1,il−1
, Z(sl) ∈ Sl,k,

Z(sl+1) ∈ Sl+1,il+1
, . . . , Z(sn) ∈ Sn,in

}

.

By the continuity of probability measure,

∞
∑

k=1

pi1,...,il−1,k,il+1,...in =pr
{

Z(s1) ∈ S1,i1 , . . . , Z(sl−1) ∈ Sl−1,il−1
, Z(sl) ∈

∞
⋃

k=1

Sl,k

Z(sl+1) ∈ Sl+1,il+1
, . . . , Z ∈ Sn,in

}

.

Since
∞
∪

k=1
Sl,k =

∞
⊗

k=1

R, (26) follows.

The theorem is proven, after showing that for any Ai ∈ B(R), i = 1, . . . , k, we have

pr{θ(s1) ∈ A1, . . . , θ(sl−1) ∈ Al−1, θ(sl) ∈ R, θ(sl+1) ∈ Al+1, . . . , θ(sn) ∈ An}

=
∑

(i1,...,in)∈{1,2,...}n

pi1,...,in δθ∗i1 (s1)(A1) · · · δθ∗il (sl) (R) · · · δθ∗in(sn)(An)

=
∑

(i1,...,il−1,il+1,...,in)∈{1,2,...}n−1

δθ∗i1 (s1)(A1) · · · δθ∗in (sn)(An)

( ∞
∑

k=1

pi1,...,il−1,k,il+1,...in

)

=
∑

(i1,...,il−1,il+1,...,in)∈{1,2,...}n−1

pi1,...,il−1,il+1,...,inδθ∗i1 (s1)(A1) · · · δθ∗in (sn)(An)

=pr{θ(s1) ∈ A1, . . . , θ(sl−1) ∈ Al−1, θ(sl+1) ∈ Al+1, . . . , θ(sn) ∈ An}. �
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Proposition 3 Let {Y (s), s ∈ D} be as in Proposition 2. If the base random field G0

is almost sure continuous, then for all s0 ∈ D, Y (s) converges weakly to Y (s0) with

probability one as ||s− s0|| → 0.

Proof. The proof follows immediately from Proposition 1, once we notice that,

under our assumptions, for any n = 1, 2, . . .,

lim
||sn−sn−1||→0

pi1,...,in = pi1,...,in−1 if in = in−1

= 0 otherwise,

independently of the particular mean around which we center the process Z, i.e. the

weights are almost surely continuous.

Appendix II: Full conditionals for the Gibbs sampler

1. Full conditionals for the Z’s.

To write the full conditionals for the Z’s, we first write the conditional distributions

[Zt,l(si)|Zt,l(sj), j 6= i, µl, η] ∼ N(µ̃i
t,l , H̃i(η)),

for all i = 1, . . . , n, l = 1, . . . , K − 1, t = 1, . . . , T , where

µ̃i
t,l = µl − hi(η)

TH−1
(−i)(η)Z

(−i)
t,l , (27)

H̃i(η) = 1 − hi(η)
TH−1

(−i)(η)hi(η), (28)

in which hi(η) is the i-th column vector of Hn (η), H(−i)(η) the (n−1)× (n−1) matrix

obtained from Hn (η) by deleting the i-th row and column, and Z
(−i)
t,l is the n − 1

dimensional vector obtained from Zt,l by deleting the i-th element. Notice that both

µ̃i
t,l and H̃i(η) are scalar.
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Now consider the full conditionals. We start considering the full conditional of

Zt,1(si), for some i = 1, . . . , n. Let us indicate with ψ = (Xt, β, θ
∗, τ 2, σ2, φ, µl, l > 1, η)

the vector of parameters of the model other than the Z’s. Then, the full conditional of

Zt,1(si) is given by

[Zt,1(si)|Yt, Z
(−i)
t,1 , Zt,l(sj), l > 2, ψ] ∝ [Zt,1(si)|Zt,1(sj), j 6= i, θ∗, µ, η, φ]×

×
K
∑

k=1

exp

[

−
1

2τ 2

{

Yt(si) −Xt (si)
T
β − θ∗k(si)

}2
]

I{Zt,1(si)<0,...,Zt,k−1(si)<0,Zt,k(si)≥0},

(29)

where Zt,2(si), . . . , Zt,K−1(si) are all known. For the purpose of exemplification, we

suppose that Zt,2(si), . . . , Zt,k−1(si) are less than zero and Zt,k(si) is greater than zero.

Then, if Zt,1(si) is sampled to be greater than zero, θ∗1(si) will be observed, i.e. θt(si) =

θ∗1(si). On the other hand, if Z1
t (si) is sampled to be less than zero, then it is evident

that θt(si) = θ∗l (si). In fact, by the binary nature of the rule that we have set for the

weights we can define the two quantities

ω− = exp

[

−
1

2τ 2
{Yt(si) −Xt(si)

Tβ − θ∗1(si)}
2

]

ω+ = exp

[

−
1

2τ 2
{Yt(si) −Xt(si)

Tβ − θ∗k(si)}
2

]

.

These are the kernels of two gaussian distributions. Therefore, if we consider the

weights

π1 =
ω−Φ

{

µ̃i
t,1√

H̃i(η)

}

ω−Φ
{

µ̃i
t,1√

H̃i(η)

}

+ ω+Φ
{

−
µ̃i

t,1√
H̃i(η)

} , and πk =
ω+Φ

{

−
µ̃i

t,1√
H̃i(η)

}

ω−Φ
{

µ̃i
t,1√

H̃i(η)

}

+ ω+Φ
{

−
µ̃i

t,1√
H̃i(η)

} ,

we can see that (29) is a mixture of two truncated gaussian. Therefore, with probability

π1, we sample Zt,1(si) from the truncated normal distribution N(µ̃i
t,1 , H̃i(η))I{Zt,1(si)≥0};

with πl sample Zt,1(si) from the truncated normal distributionN(µ̃i
t,1 , H̃i(η))I{Zt,1(si)<0}.

We next proceed repeating the same arguments for Zt,2(si).
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Let us now consider the full conditional for the general term Zt,l(si). If Zt,j(si) ≥ 0,

for some j < l, then θt(si) = θ∗j (si) and Zt,l(si) is sampled directly from the unrestricted

distribution N(µ̃i
t,l , H̃i(η)).

Otherwise if Zt,j(si) < 0, for j < l, the full conditional is again a binary mixture of

truncated normals as we have seen for Z1
t (si) (see equation 29). Say Zt,k(si) ≥ 0 for

some k > l, again let

ω− = exp

[

−
1

2τ 2
{Yt(si) −Xt(si)

Tβ − θ∗l (si)}
2

]

ω+ = exp

[

−
1

2τ 2
{Yt(si) −Xt(si)

Tβ − θ∗k(si)}
2

]

,

and

πl =
ω−Φ

{

µ̃i
t,l√

H̃i(η)

}

ω−Φ
{

µ̃i
t,l√

H̃i(η)

}

+ ω+Φ
{

−
µ̃i

t,l√
H̃i(η)

} and πk =
ω+Φ

{

−
µ̃i

t,l√
H̃i(η)

}

ω−Φ
{

µ̃i
t,l√

H̃i(η)

}

+ ω+Φ
{

−
µ̃i

t,l√
H̃i(η)

} .

Therefore, the full conditional for Zt,l(si) is again a mixture of two truncated nor-

mals. In particular, with probability πl, we sample Zt,l(si) from the truncated normal

distribution N(µ̃i
t,l , H̃i(η))I{Zt,l(si)≥0}; with probability πk, we sample Zt,l(si) from the

truncated normal distribution N(µ̃i
t,l , H̃i(η))I{Zt,l(si)<0}. Next, proceed repeating simi-

lar arguments for Zt,l+1(si).

The modification for the full conditionals for the Z’s in the spatio-temporal dynamic

model is as follows: for t = 1, follow the same steps as in the original sampler of the

independent-sample case. Suppose zm,l, l = 1, ..K − 1; m = 1, . . . , t − 1 is already

sampled. Calculate ωm by zm,l and θ∗l . For t, let ỹt = yt −
∑t−1

m=1 γ
t−mωm. With

ỹt replacing yt, follow the same steps as in the independent sampler to get zt,l, and

calculate ωt.
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2. Full conditional for the θ∗’s.

We can update the θ∗’s all at once for all locations. In fact, in order to keep the notation

simple, let us consider at each point s ∈ D the partition induced on the space of the

Z’s by the allocative process, that is, for t = 1, . . . , T and i = 1, . . . , K − 1, consider

the sets Zt,i(s) = {s ∈ D : Zt,1(s) < 0, . . . , Zt,i−1(s) < 0, Zt,i(s) ≥ 0}, and Zt,K(s) =

{s ∈ D : Zt,1(s) < 0, . . . , Zt,K−1(s) < 0}. Then, I(Zt,l) = diag{IZt,l(s1), . . . , IZt,l(sn)} is

the diagonal matrix whose i-th entry is equal to one when the component l is chosen

at location si.

It is immediate to see that the full conditional for θ∗l = (θ∗l (s1), . . . , θ
∗
l (sn)) is given by

[θ∗l |Yt, Zt, t = 1, . . . , T, β, τ2, σ2, φ] ∝ exp

{

−
1

2τ2

T
∑

t=1

(Yt − XT
t β − θ∗k)

T I(Zt)(Yt − XT
t β − θ∗k)

}

×

× exp

{

−
1

2σ2
θ∗Tk R−1

n (φ) θ∗k

}

Then,

[θ∗l |Yt, Zt, t = 1, . . . , T, β, τ 2, σ2, φ] ∼ N

(

1

τ 2
Λ

T
∑

t=1

I(Zt,l)
(

Yt −XT
t β
)

,Λ

)

where Λ =
(

1
τ2

∑T

t=1 I(Zt,l) + 1
σ2R

−1
n (φ)

)−1

.

Once we know θ∗l and Zt for all l = 1, . . . , K and t = 1, . . . , T , we can compute each θt

as a function of (θ∗l , Zt).

The full conditionals for θ∗l ’s in the spatio-temporal dynamical model are far more

complicated. We are still able to update θ∗l at all locations, but it has to be conditioned

on all the other value θ∗j ’s with j 6= l.

Rewrite model (22) with the expanded accumulated spatial random effect

Yt(s) = Xt(s)
Tβ +

t
∑

m=1

γt−mωm(s) + εt(s)

Then, if we write ωm as a function θ∗l ’s and Zt’s, we obtain

Yt(s) = Xt(s)
Tβ +

t
∑

m=1

γt−m

K−1
∑

j=1

I(Zm,j)θ
∗
j (s) + εt(s)
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Hence, the likelihood × prior can be written as

∝ exp



−
1

2τ 2

T
∑

t=1

{

Yt −

t
∑

m=1

γt−m

K−1
∑

j 6=l=1

I(Zm,j)θ
∗
j −

t
∑

m=1

γt−mI(Zm,l)θ
∗
l −XT

t β

}T

{

Yt −

t
∑

m=1

γt−m

K−1
∑

j 6=l=1

I(Zm,j)θ
∗
j −

t
∑

m=1

γt−mI(Zm,l)θ
∗
l −XT

t β

}]

×

× exp

{

−
1

2σ2
θ∗Tl R−1(φ)θ∗l

}

.

Let us define

ỹt = yt −

t
∑

m=1

{

γt−m

K−1
∑

j 6=l=1

I(Zm,j)θ
∗
j

}

−XT
t β,

The expression above becomes

exp



−
1

2τ 2

T
∑

t=1

{

ỹt −
t
∑

m=1

γt−mI(Zm,l)θ
∗
l

}T {

ỹt −
t
∑

m=1

γt−mI(Zm,l)θ
∗
l

}



×

× exp

{

−
1

2σ2
θ∗Tl R−1(φ)θ∗l

}

,

from which we can deduce

[θ∗l |θ
∗
j (j 6= l) , zt, yt, βt, τ

2, σ2, φ] ∼ N

(

1

τ 2
Λ

T
∑

t=1

{

t
∑

m=1

γt−mI(Zm,l)

}

ỹt,Λ

)

,

with Λ =
[

1
τ2

∑T

t=1

{
∑t

m=1 γ
t−mI(Zm,l)

}2
+ 1

σ2R
−1(φ)

]−1

.

3. Full conditional for β.

Assuming β ∼ Np(β0,Σ0), we get

[β|Xt, Yt, Zt, θt, τ
2] ∼ N(β̂, Σ̂β),

where Σ̂β =
(

1
2

∑T

t=1X
T
t Xt + Σ−1

0

)−1

and β̂ = Σ̂β

{

1
2
XT

t (Yt − θt) + Σ−1
0 β0

}

.
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4. Full conditional for τ 2.

Assume τ 2 ∼ IGamma(ατ , βτ ). Then

[τ 2|Xt, Yt, θt, β] ∼ IG(α̃τ , β̃τ ),

where α̃τ = ατ + nT
2

and β̃τ = βτ + 1
2

∑T

t=1 (Yt − βXt − θt)
T (Yt − βXt − θt).

5. Full conditional for σ2.

Assume σ2 ∼ IG(ασ, βσ). Then,

[σ2|θ∗l , φ] ∼ IGamma(α̃σ, β̃σ),

where α̃σ = ασ + nK
2

, and β̃σ = βσ + 1
2

∑K

l=1 θ
∗T
l R−1

n (φ)θ∗l .

6. Full conditional for φ.

Depending on the prior [φ], the full conditional of φ can be sampled with a Metropolis

within Gibbs step

[φ|θ∗l , σ
2] ∼ [φ] × exp

{

−
1

2σ2

K
∑

l=1

θ∗Tl R−1
n (φ)θ∗l

}

.

7. Full conditional for µ.

Generally we must use a Metropolis step for µl; l = 1, . . . K − 1, unless the α in the

Beta (1, α) is equal to 1. Note that pr (Zl(s) ≥ 0) = Φ (µl) and pr (Zl(s) ≥ 0) ∼

Beta (1, α) induce a prior for µl ∝ [1 − Φ (µl)]
α−1 × exp

{

−1
2
µ2

l

}

. If α = 1, the prior

for µl is but a normal distribution thus conjugate. The full conditional for µl is

[

µl|Z
l
t, η
]

∝ [1 − Φ (µl)]
α−1 × exp

{

−
1

2
µ2

l

}

×

× exp

{

−
1

2

T
∑

t=1

(

Z l
t − µl1n

)T
H−1

n (η)
(

Z l
m − µl1n

)

}

42



8. Full conditional for η.

Depending on the prior [η], the full conditional of ψ can be sampled with a Metropolis

within Gibbs step

[η|Zt, µl] ∼ [η] × exp

{

−
1

2

T
∑

t=1

K−1
∑

l=1

(

Z l
t − µl1n

)T
H−1

n (η)
(

Z l
m − µl1n

)

}

.
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Θ1
l (sj) Θ0

l (sj)

Θ1
l (si) ql,1,1(si, sj) ql,1,0(si, sj) ql(si)

Θ0
l (si) ql,0,1(si, sj) ql,0,0(si, sj) 1 − ql(si)

ql(sj) 1 − ql(sj) 1

Table 1: Relevant probabilities in the multivariate stick-breaking construction in the

special case of n = 2 locations, for l = 1, 2, . . ..
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Figure 1: An exemplification of the multivariate stick-breaking procedure for the special

case of n = 2 locations
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Figure 2: The Design Locations, New Locations and the Point Source in a Region for

the Simulation Example in Section 6 and 7.
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Figure 3: For the Simulation Example in Section 6, Posterior Predictive Densities, True

Densities, and Observed Samples for Four Randomly Selected Locations(See text for

details)
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Figure 4: Predictive and True Bivariate Distribution for the Simulated Data Example

of Section 6(See text for details)
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Figure 5: Decay in Probability of Common Surface Selection as a Function of Dis-

tance(See Section 6 for details)
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Figure 6: For the Simulation Example in Section 7, Posterior Predictive Densities, True

Densities for Two Locations with Observations and Two New Locations at T+1(See

text for details)
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Figure 7: Predictive and True Bivariate Predictive Distribution at T+1 for the Simu-

lated Data Example of Section 7(See text for details)
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Figure 8: 95% and 80% Simultaneous Bivariate Posterior Density Confidence Sets(See

section 7 for details)

55


