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Summary

Modelling for spatially referenced data is receiving increased attention in the
statistics and the more general scientific literature with applications in, e.g.,
environmental, ecological and health sciences. Bayesian nonparametric mod-
elling for unknown population distributions, i.e., placing distributions on a
space of distributions is also enjoying a resurgence of interest thanks to their
amenability to MCMC model fitting. Indeed, both areas benefit from the
wide availability of high speed computation. Until very recently, there was
no literature attempting to merge them. The contribution of this paper is
to provide an overview of this recent effort including some new advances.
The nonparametric specifications that underlie this work are generalizations
of Dirichlet process mixture models. We attempt to interrelate these various
choices either as generalizations or suitable limits. We also offer data analytic
comparison among these specifications as well as with customary Gaussian
process alternatives.

Keywords and Phrases: Gaussian process, generalized stick-breaking
process, local surface selection, nonstationary process, spatial
random effects

1. INTRODUCTION

Point-referenced spatial data is collected in a wide range of contexts, with applica-
tions, among others, in environmental, ecological, and health sciences. Modelling
for such data introduces a spatial process specification either for the data directly or
for a set of spatial random effects associated with the mean structure for the data,
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perhaps on a transformed scale. In virtually all of this work the spatial process
specification is parametric. In fact, it is almost always a Gaussian process (GP),
which is often assumed to be stationary.

Within a Bayesian framework the resulting model specification can be viewed as
hierarchical (see, e.g., Banerjee, Carlin and Gelfand, 2004). The parameters of the
spatial process are unknown, and so they are assigned prior distributions resulting
in a random GP. Fitting, using Markov chain Monte Carlo (MCMC) methods, is
by now fairly straightforward. See, e.g., Agarwal and Gelfand (2005) and further
references therein. Bayesian inference is attractive in analyzing point-referenced
spatial data particularly with regard to assessing uncertainty. The alternative likeli-
hood analysis will impose arguably inappropriate assumptions to achieve asymptotic
inference, and hence to obtain asymptotic variability (Stein, 1999).

Spatially varying kernel convolution ideas as in Higdon, Swall and Kern (1999)
as well as a local stationarity approach as in Fuentes and Smith (2001) remove the
stationarity assumption but are still within the setting of GPs. Zidek and colleagues
(see, e.g., Le and Zidek (1992)) introduce nonstationarity through a Wishart model
for a random covariance matrix with mean based upon a stationary covariance
function. However, this construction sacrifices the notion of a spatial process and,
given the covariance matrix, the spatial effects are still Gaussian.

There is a rich literature on nonparametric modeling for an expected spatial
surface, much of it drawing from the nonparametric regression literature. See, e.g.,
Stein (1999) and further references therein. Our interest is in nonparametric mod-
eling for the stochastic mechanism producing the spatial dependence structure. In
this regard, the literature is very limited. The nonparametric variogram fitting ap-
proaches, e.g., Shapiro and Botha (1991) and Barry and Ver Hoef (1996) do not fully
specify the process; they are nonparametric only in the second moment structure.
Arguably, the most significant nonparametric specification of the covariance func-
tion is the “deformation” approach of Sampson and Guttorp (1992). The observed
locations in the actual (geographic) space are viewed as a nonlinear transformation
of locations in a conceptual (deformed) space where the process is assumed station-
ary and, in fact, isotropic. This approach has been pursued in a Bayesian context
by both Damian et al. (2001) and Schmidt and O’Hagan (2003) but again confined
to a GP for the likelihood.

Regarding spatiotemporal data, while space is usually taken to be continuous,
a primary distinction is whether time is taken to be continuous or discrete. In par-
ticular, with continuous time, the space-time dependence structure is provided by
a covariance function which may be separable (Mardia and Goodall, 1993) or non-
separable (Stein, 2005 and references therein). With discrete time, the dependence
structure is usually conceived as temporal evolution of a spatial process described
in the form of a dynamic model. (See, e.g., Gelfand, Banerjee and Gamerman,
2005a.) Such evolution can yield a time series at each spatial location, as with
weather or pollution measurements at monitoring stations. It can also occur with
cross-sectional data, as with real estate transactions over a region across time. All
of this literature is fully parametric.

The goal of this paper is to review and extend recent nonparametric modeling ap-
proaches for spatial and spatiotemporal data through the use of the Dirichlet process
(DP) (Ferguson, 1973, 1974). DPs have been used to provide random univariate and
multivariate distributions, requiring only a baseline or centering distribution and a
precision parameter. Using the DP, we describe a probability law for the stochastic
process, {Y (s) : s ∈ D}. We refer to such a model as a spatial Dirichlet process
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(SDP) (Gelfand et al., 2005b). As with GPs, we provide this specification through
finite dimensional distributions, that is, a random distribution for (Y (s1), ..., Y (sn))
where n and the set of si are arbitrary. The resulting process is nonstationary and
the resulting joint distributions are not normal. With regard to the set of random
univariate distributions, {F (Y (s)) : s ∈ D} we can achieve a dependent Dirichlet
process (DDP)(MacEachern (2000)). More precisely, the F (Y (s)) are dependent
and, as s → s0, the realized F (Y (s)) converge to the realized F (Y (s0)). This en-
ables us to pool information from nearby spatial locations to better estimate say
F (Y (s0)) yielding fully model-based nonparametric spatial prediction analogous to
parametric kriging using predictive distributions.

For a fully nonparametric modeling approach, replication of some form will be
required; with only a single observation from a multivariate distribution, a non-
parametric model is not viable.1 Replicates from a spatial process typically arise
over time. Depending upon the data collection, an assumption of independence for
temporal replicates may be inappropriate; fortunately, we can directly embed our
methodology within a dynamic model, retaining temporal dependence.

Our contribution is best described as random effects modelling. Just as DP
priors are often used to extend random effects specifications beyond usual Gaus-
sian random effects, here we broaden Gaussian spatial process specifications. In
this regard, we recall the finite-dimensional Dirichlet process priors (Ishwaran and
Zarepour, 2002b references therein), which we denote as DPK priors, and which
converge, under suitable conditions, to Dirichlet process priors. Spatial analogues
are easily formulated (we call them SDPK priors) with similar limiting behavior
and thus provide another extension of GP’s. Recent work by Duan, Guindani and
Gelfand (2005) extends the SDP to a generalized SDP (GSDP) by introducing “local
surface selection”. In essence, for a usual multivariate DP, vectors are drawn from
a probability weighted countable collection of vectors. A generalization would allow
for individual components of the drawn vector to come from different choices of
the countable collection of vectors. Here, we can also formulate a finite-dimensional
version which we refer to as a GSDPK . The cartoon presented as Figure 1 attempts
to capture the modelling world that we are focusing on. G denotes “Gaussian” and
GP a Gaussian process. The arrows suggest either that the model being pointed to
is an extension or generalization of the model it emanates from.

GP

G  DP GSDPSDP

GSDPSDP kkDPk

Figure 1: The modelling world for this paper.

Possible advantages offered by our approach are the following. We can draw
upon the well-developed theory for DP mixing to facilitate interpretation of our
analysis. We can implement the required simulation-based model fitting for posterior

1The deformation setting (Sampson and Guttorp (1992)) requires replications to obtain
the sample covariance estimate, a nonparametric estimate of the process covariance matrix
at the observed sites.
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inference and spatial prediction easily, availing ourselves of established strategies
for DP mixture models. (See, e.g., Neal (2000) and, more recently, Jain and Neal
(2004).) We can infer about the random distribution that is operating at any given
location or set of locations in the region. An alternative line of nonparametric
development using Lévy processes is summarized in Clyde and Wolpert (2006).

The models presented here are in terms of random process realizations over a
geographic space. However, we can also envisage random curves or surfaces over a
covariate space, i.e., a space of covariate levels. Covariate space might be dose levels
with interest in response to treatment, ocean depths with interest in temperature
or salinity, or time yielding, say, hormone levels across menstrual cycles. Hence,
our models are directly applicable to so-called functional data analysis where we
consider replicates of random curves or surfaces as process realizations. Lastly, we
can imagine spatial functional data analysis where there is a conceptual random
curve at each spatial location. The curves are only observed (with error) at a finite
set of locations and a finite number of points at each location. For instance there is
an unknown temperature vs depth curve at every location in an ocean and we may
gather data at a set of locations and a set of depths at these locations. We would
expect that curves would be more similar for locations close to each other, less so
when the locations are distant from each other.

The format for the paper is as follows. In Section 2 we review the DP and
DPK specifications. In Section 3 we bring in the spatial aspect with Section 4
providing two examples to compare the GP, SDP, and SDPK . Section 5 develops
the generalized local surface selection versions, the GSDP and GSDPK leaving
Section 6 to provide a comparison among them and the SDP. Section 7 concludes
with a summary and some issues that require further examination.

2. A REVIEW

Hierarchical models are frequently built through random effects which typically are
specified to be i.i.d. from a mean 0 Gaussian “population” model. The random
effects need not be univariate, e.g., random slopes and intercepts led to random
lines and more generally to random curves for instance in growth curve modelling.
See, e.g., Diggle, Liang and Zeger (1994) for a parametric treatment with the re-
cent work of Scaccia and Green (2003) offering a nonparametric view. With the
computational revolution of the ’90’s (Gibbs sampling and MCMC), handling hier-
archical models with Gaussian random effects became routine (arguably the most
widely used specification in the BUGS software. Of course, concern regarding the
Gaussian assumption led to more flexible specifications through mixture modelling
including t distributions, Dirichlet processes, and finite mixtures within which we
distinguish the finite dimensional Dirichlet process models (what we refer to as DPK

models). We now review this modelling. In the process, we clarify the arrows in
Figure 1 involving G, DP and DPK .

There has been a growing literature on the use of DP priors primarily because
they are easy to specify, attractive to interpret, and ideally suited for model fitting
within an MCMC framework. In particular, we recall the stickbreaking represen-
tation of the DP (Sethuraman (1994)). Let θ∗1 , θ∗2 , . . . be i.i.d. random elements
independently and identically distributed according to the law G0. G0 can be a
distribution over a general probability space, allowing the θ∗’s to be random objects
such as vectors, a stochastic process of random variables (Section 3), or a distri-
bution (Rodriguez et al, 2006). Let q1, q2, . . . be random variables independent of
the θ∗’s and i.i.d. among themselves with common distribution Beta(1, α). If we
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set p1 = q1, p2 = q2 (1 − q1), . . ., pk = qk
Qk−1

j=1 (1 − qj), . . . the random probability
measure defined by

G(·) =
∞X

k=1

pk δθ∗k
(·) , (1)

is distributed according to a DP.
A wide range of random probability measures can be defined by means of a stick-

breaking construction, where the q’s are drawn independently from an arbitrary
distribution Q on [0, 1] (see Hjort (2000)). For example, the beta-two parameter
process (Ishwaran and Zarepour, 2000) is defined by choosing qk ∼ Beta(a, b). If
qk ∼ Beta(1− a, b + ka), k = 1, 2, . . ., for some a ∈ [0, 1) and b ∈ (−a,∞) we obtain
the two-parameter Poisson-Dirichlet Process (Pitman and Yor, 97). Ishwaran and
James (2001) discuss the general case, qk ∼ Beta(ak, bk). More generally, we can
consider the discrete random probability measure

GK(·) =
KX

k=1

pk δθ∗k
(·), (2)

where K is an integer random variable (allowed to be infinite), θ∗k are i.i.d. from some
base distribution G0 (not necessarily nonatomic) and, independently, the weights
pk can have any distribution on the simplex {p :

PK
i=1 pk = 1, pk ≥ 0} (see Ongaro

and Cattaneo (2004)). In these constructions the stick-breaking is one-dimensional ;
the probability pk is for the selection of the entire random quantity, θ∗k.

If K is finite, and (p1, . . . , pK) ∼ Dir(α1,K , . . . , αK,K), we obtain the class of fi-
nite dimensional Dirichlet priors, discussed by Ishwaran and Zarepour (2002a). We
refer to this class of priors as DPK priors and denote them by GK ∼ DPK(α, G0).
In fact, such priors have often been considered as a general approximation of models
based on 1, e.g., it has been a common choice to set αi,K = λK (see i,KKRichard-
son and Green (1997)). However, an important result from Ishwaran and Zare-
pour (2002a) clarifies when finite sums such as 2 converge to a DP. In particular,
let GK ∼ DPK(α, G0) and EGk (h(x)) =

R
h(x)GK(dx) denote a random func-

tional of GK , where h is a non-negative continuous function with compact support.
Then, if αk,K = λK , where K λK → ∞, then EGk (h(x)) p

−→ EG0(h(x)), that is the
choice of a uniform Dirichlet prior leads to a limiting parametric model. Instead, ifPK

k=1 αk,K → α > 0 and max α1,K , . . . , αK,K → 0 as K → ∞, the limit distribu-
tion of GK is really nonparametric, since EGk (h(x)) D

−→ (h(x)), where G is the usual
Dirichlet process with finite measure αG0. The result follows directly from 0 King-
man (1975) and the properties of the Poisson-Dirichlet distribution. In particular,
the former includes the common case of αk,K = α/K for some α > 0, whose weak
convergence to the DP had already been proved by Muliere and Secchi (1995).

In some situations, there could be an interest in indexing the random probabil-
ity distribution of the observables according to the values of underlying covariates.
Following MacEachern (see MacEachern (2000), we refer to these models as de-
pendent random probability measures (see also De Lorio et al. (2004), Griffin and
Steel (2004)) noting that there is a previous literature in this vein summarized
in Petrone and Raftery (1997). In this setting, the weights and point masses of
the random probability measure 2 are indexed by a vector of covariates z, that is
GK(z, ·) =

PK
k=1 pk(z) δθ∗k(z)(·).
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3. RANDOM DISTRIBUTIONS FOR SPATIAL LOCATIONS:
THE SDP AND SDPK MODELS

We assume data from a random field {Y (s), s ∈ D}, D ∈ Rd, such that

Y (s) = µ(s) + θ(s) + ε(s), (3)

where the mean structure µ(s) is, say x(s)T β with x(s) a p-dimensional vector
comprised of covariates at location s. β is a p × 1 vector of regression coefficients.
The residual term is partitioned into two pieces. The first, θ(s), accounts for spatial
variability that is not captured by the mean. The second term, ε(s), is intended to
capture variability of a non spatial nature; it can be interpreted either as a pure error
term or as a term incorporating measurement errors or microscale variability. When
θ(s) is a mean 0 Gaussian process and ε(s) is Gaussian white noise, the process Y (s)
is Gaussian and stationary. A mixture of Gaussian processes would permit greater
flexibility (see, e.g., Brown et al. (2003)) as would the Gaussian/logGaussian process
described in Palacios and Steel (2006).

Gelfand, Kottas and MacEachern (2005b) generalize in a different way, replacing
the Gaussian specification with a DP. They define a spatial Dirichlet process (SDP)
by considering the base measure G0 itself to be a mean zero stationary Gaussian
process defined over D. Hence, recalling 1, the θ∗k’s are realizations of a random
field, i.e. surfaces over D, θ∗k = {θ∗k(s), s ∈ D}, k = 1, . . .. However, the random
weights do not depend on the locations and the spatial dependence is introduced
only through the underlying base measure.

More generally, we could extend the random probability measures in 2 so that
K is finite, (p1, . . . , pK) ∼ Dir(α1, . . . , αK) and θ∗k are surfaces, which are real-
izations of a specified random field G0, thus defining a finite dimensional spatial
Dirichlet prior (SDPK). The above results from Ishwaran and Zarepour (2002a)
show that, for certain choices of the α parameters, the SDPK process provides
a finite-approximation to the SDP process. Let G denote a random distribution
obtained according to either 1 or 2. In both cases, we need only consider finite di-
mensional distributions of G at locations, say (s1, . . . , sn), denoted by G(n). Then,

G(n) ∼ DP (αG(n)
0 ) or G(n) ∼ DPK(αG(n)

0 ) where G(n)
0 is the associated n-variate

finite dimensional (e.g., multivariate normal) distribution of the process G0.
Then, if {θ(s), s ∈ D} is a random field, such that θ(·)|G ∼ G, where G ∼

SDP (α, G0) or G ∼ SDPK(α, G0), we obtain

E(θ(s)|G) =
PK

k=1 pk θ∗k(s),

V ar(θ(s)|G) =
PK

k=1 pk (θ∗k(s))2 −
nPK

k=1 pk θ∗k(s)
o2

,

and for any two locations si, sj ∈ D,

Cov(θ(si), θ(sj)|G) =
KX

k=1

pk θ∗k(si) θ∗k(sj)−
(

KX

k=1

pk θ∗k(si)

) (
KX

k=1

pkθ∗k(sj)

)
, (4)

where K =∞ if G is a SDP. Hence, for any given G, the process θ(·) has heteroge-
nous variance and is nonstationary. However, G is “centered” around G0 which is
typically stationary.
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Figure 2: A region comprising the state of Colorado where we have collected data used
in Section 4.

Finally, consider data Yt = (Yt(s1), . . . , Yt(sn))T , for replications t = 1, . . . , T ,
and associate with Yt a vector θt = (θt(s1), . . . , θt(sn))T , such that θt|G(n)i.i.d.

∼ G(n),
t = 1, . . . , T . Then, the following semiparametric hierarchical model arises:

Y1,Y2, . . . ,YT | θ1, θ2, . . . , θT , β, τ2 ∼
QT

t=1 N(XT
t β + θt, τ2 In)

θ1, θ2, . . . , θT |G(n) i.i.d.
∼ G(n) (5)

where Xt is a suitable design matrix for replicate t. The model is completed by
choosing an appropriate specification for the unknown G as above together with a
suitable choice of prior for the other parameters of the model.

4. A DATA EXAMPLE.

Here, we compare the behavior of the GP, the SDP and the SDPK using temperature
and precipitation data collected at 45 weather stations monthly over 40 years (1958-
1997) in a region encompassing the state of Colorado (in the US) (see Figure 2).
We assume independence across years by restricting ourselves to average monthly
temperature for the single month of July (though embedding (5) within a dynamic
model could also be straightforwardly done)

We assume a spatial random effect model as in 3, where Yt(s) is the average July
temperature in year t and µt(s) = β0 + βT

1 Xt(s), with Xt(s) indicating associated
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Figure 3: Posterior predictive densities Ynew(s)|data for the SDP(thick line −) and GP
(thick dotted line = −). The lighter dotted line (−) is the estimated density from the 40
replicates in the Colorado dataset (real data).
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and GP models for locations 16 and 21 as well as 21 and 30 and the 40 replicates in the
Colorado dataset (real data). See Section 4.
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precipitation. The correlation function for the spatial effect is assumed exponential,
ρ(s−s′) = σ2 exp{−φ ||s−s′||}. In all other respects the prior distributions and the
hyperparameters in 5 are chosen as in Gelfand et al. (2005b), except that here φ is
given a Gamma prior and is sampled with a Metropolis-Hastings step. Also, in order
to facilitate comparison with the SDPK we fix α = 10 (trials with random α in the
SDP yielded similar results. For the SDP, this choice corresponds to a number of
clusters apriori equal to 16 (see Antoniak (1974)), a weak restriction on the number
of clusters. Also, for K = 10 and αi,K = α/K, in the SDPK the distribution of the
pk is uniform Dirichlet.

With regard to the choice of the GP model for comparison, following (3), we are
concerned with the residual θt(s)+εt(s), t = 1, 2, ..., T . The two extreme cases corre-
spond to α→∞ (where the θt(s) are all distinct) and α→ 0 (where θt(s) = θ(s)).
From this perspective, the SDP (and the SDPK) falls in between. Structurally,
the differences are clear. θt(s) + εt(s) has dependence within a replication but in-
dependence across replications while θ(s) + εt(s) has dependence both within and
across replications (see Sethuraman and Tiwari (1982)). With regard to comparison,
according to context, a case can be made for each of the extremes. For instance,
suppose the spatial locations are associated with apartment buildings, and the repli-
cations are the selling prices of condominium units within the building. Each unit
should receive a common building level spatial effect (see Gelfand et al. (2006)).
However, in, e.g., Duan and Gelfand , 2006 the α = ∞ case was chosen as the
“fair” comparison with the SDP, arguing that, in both cases, “dependence within a
replication with independence across replications” is retained. (Of course, for the
former, the mixing distribution is “known” while for the latter it is not.)

The simple GP (α → 0) is unable to capture the variability of multimodal
data. In particular, using d2 =

P
s,t [Yt(s)− E(Ynew(s)|data)]2, a predictive sum

of squared deviations, we find d2 is roughly 950 for the SDP, SDPK and 860 for
GP (α → ∞), while it is 1, 600 for the GP (α → 0). Also, as long as the number
of mixing components is small relative to K, little difference is seen between the
SDPK and SDP models, in accordance with the theoretical results in Ishwaran and
Zarepour (2002a). so, we restrict comparison to the SDP and the GP corresponding
to α→∞.

In Figure 3, we show the marginal predictive distributions at sites 13, 16, 21, and
30, noting that the SDP captures the estimated density better than the GP at these
locations. Next, sites 16 and 21 are close to each other while sites 21 and 30 are far
apart. In both cases, the bivariate predictive distribution under the SDP suggests
the presence of two clusters, while the GP suggests unimodality (see Figure 4).

5. GENERALIZING THE SDP AND SDPK .

Here we motivate and formulate the generalized spatial Dirichlet process models.

5.1. Motivating the generalized DP

The DP in (2) selects a θ∗k with probability pk. Though clustering can be encouraged
say with small α, there is always the chance to draw a new, distinct θ∗. For exam-
ple, in the problem of species sampling it is attractive to have a mechanism that
enables new species types (Pitman, 1996) and a similar perspective would apply in
developing say, image classifications.

Though this is possible with usual finite mixture models by allowing the number
of mixture components to be random, it is more elegantly handled through the DP.
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Still, the DP can be viewed as inefficient in this regard. For instance, assume a
species is defined through a vector of morphological and genetic traits. In the DP
setting, a new species would be characterized by a clearly distinct vector. However,
suppose a new species is a hybrid of two existing species. The present DP can not
distinguish this case from any other distinct vector. However, a DP that allows for
different components of the θt’s to be drawn from different θ∗k’s would. Evidently, if
some new species arise as such hybrids, the latter process could introduce far fewer
clusters yielding a much simpler story for speciation.

If the θt’s are say r×1, i.e., θT
t = (θt1, θt2, ...., θtr), process specification requires

joint probabilities of the form pi1,i2,...ir = Pr(θt1 = θ∗i1,1, θt2 = θ∗i2,2, ...., θtr = θ∗ir,r)
where the il ∈ {1, 2, ..., K}. Such specification will be referred to as r-dimensional
stick-breaking and is discussed in some detail in Section 5.3.

Our goal is a bit more ambitious. In the spatial setting, we want local surface
selection among the process realizations that define the SDP or SDPk. Thus, we
need to provide such selection for any number of and choice of locations. Moreover,
we seek to do this in a spatially structured way. The closer two locations are the
more likely they are to select the same surface; when sufficiently far apart, surface
selection will be essentially independent. Rather than attempting to sample the p’s
above, it will prove easier to simulate indicator variables that produce these p’s.

5.2. The Basics of the GSDP

Though the SDP realizes a countable collection of surfaces it can not capture the
situation in which different surfaces can be selected at different locations. For exam-
ple, in brain imaging, with regard to neurological activity level, researchers imagine
healthy brain images (surfaces) as well as diseased or impaired brain images; how-
ever, for an actual image, only a portion of the brain is diseased and it is appropriate
to envision surface selection according to where the brain is diseased.

To formalize the GSDP, we start by considering a base random field G0, which,
for convenience, we take to be stationary and Gaussian, and indicate with θ∗l =
{θ∗l (s), s ∈ D} a realization from G0, i.e., a surface over D. Then we define a random
probability measure G on the space of surfaces over D as that measure whose finite
dimensional distributions almost surely have the following representation: for any
set of locations (s1, . . . , sn) ∈ D, and any collection of sets {A1, . . . , An} in B(R),

pr{θ(s1) ∈ A1, . . . , θ(sn) ∈ An} =
KX

i1=1

...
KX

in=1

pi1,...,in δθ∗i1
(s1)(A1) . . . δθ∗in

(sn)(An),

(6)

where the θ∗j ’s are independent and identically distributed as G(n
0 ), ij is an ab-

breviation for i(sj), j = 1, 2, . . . , n, and the weights {pi1,...,in}, conditionally on
the locations, have a distribution defined on the simplex P = {pi1,...,in ≥ 0 :PK

i1=1 ...
PK

in=1 pii,...,in = 1} and independent of that for the θ′s.
Evidently, (6) allows the possibility to choose different surfaces at different lo-

cations. However, the weights need to satisfy a consistency condition in order to
properly define a random process for θ(·). Specifically, for any set of locations
(s1, . . . , sn), n ∈ N and for all , ∈ {1, . . . , n}, we need

pi1,...,i!−1,i!+1,...,in = pi1,...,i!−1,·,i!+1,...,in ≡
KX

j=1

pi1,...,i!−1,j,i!+1,...,in . (7)
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So, although the suppression of the s1, s2, ..., sn in (7) may disguise it, the collection
of probabilities is really a process. Hence, the weights must satisfy a continuity
property (essentially, Kolmogorov consistency of the finite dimensional laws); for
locations s and s0, as s → s0, pi1,i2 = pr{θ(s) = θ∗i1(s), θ(s0) = θ∗i2(s0)}, tends to
the marginal probability pi2 = pr{θ(s0) = θ∗i2(s0)} when i1 = i2, and to 0 otherwise.

Extension to three or more locations is clear and we refer this property as almost
sure continuity of the weights (suggested by the almost sure continuity of the paths
of a univariate spatial process, as defined in Kent (1989) or Banerjee et al. (2003).
Suppose we also assume the random field G0 to be almost surely continuous (a
univariate spatial process θ(s), s ∈ D is said to be almost surely continuous at a
point s0 if θ(s) → θ(s0) with probability one as ||s − s0|| → 0). Then, for the
random field given by (6) if the set of weights {pi1,...,in} and the base random field
G0 are almost surely continuous, θ(s) converges weakly to θ(s0) with probability
one as ||s− s0||→ 0 for all s0 ∈ D.

Conditionally on the realized distribution G, the process has first and second
moments given by (and comparable with (4))

E{θ(s)|G} =
PK

l=1 pl(s) θ∗l (s)

var{θ(s)|G} =
PK

l=1 pl(s) θ∗
2

l (s)−
 PK

l=1 pl θ∗l (s)

ff2

,

and, for a pair of sites si, sj ,

cov{θ(si), θ(sj)|G} =
PK

l=1

P∞
m=1 pl,m(si, sj) θ∗l (si) θ∗m(sj)+

−
 PK

l=1 pl(si) θ∗l (si)

ff  PK
m=1 pm(sj) θ∗m(sj)

ff
.

(8)

(8) shows that with almost surely continuous realizations from the base process and
of the weights, the GSDP is mean square continuous.

As with the SDP, the process θ(s) has heterogenous variance and is nonstation-
ary. However, marginalizing over G clarifies the difference. Suppose G0 is a mean
zero stationary Gaussian process with finite variance σ2 and correlation function
ρφ(si − sj). Then, E{θ(s)} = 0 and var{θ(s)} = σ2 as before, but now

cov{Y (si), Y (sj)} = σ2ρφ(si − sj)
KX

l=1

E{pll(si, sj)}. (9)

Notice that
PK

l=1 E{pll(si, sj)} < 1 so, marginally, the association structure is di-
minished by the amount of mass that the process (6) is expected to place on the
not equally indexed θ∗’s. Moreover, from (9), the process θ(s) is centered around a
stationary process only when E{pll(si, sj)} is a function of si − sj for all si and sj .

5.3. Multi-dimensional Stick-breaking

We now turn to the specification of pi1,...,in for any choice of n and s1, ..., sn. We
propose a multivariate stick-breaking construction which we detail in the bivariate
setting. Sethuraman’s univariate stick-breaking construction has weights pl defined
above (1). Denote the random events {θ = θ∗l } by Θ1

l (with their complements Θ0
l )

and interpret the sequence of weights {p1, p2, . . .} as arising from q1 = pr{Θ1
l }, ql =

pr{Θ1
l |Θ0

m, m < l} = pr{Y = θ∗l |Y )= θ∗m, m < l}, l = 1, 2, . . .. At each location let



12 A. E. Gelfand, M. Guindani and S. Petrone

Θu
l (s), u = 0, 1, be such that Θ1

l (s) = {θ(s) = θ∗l (s)} and Θ0
l (s) = {θ(s) )= θ∗l (s)}.

Then, for any two locations si, sj , we can consider the probabilities q1,u,v(si, sj) =
pr{Θu

1 (si), Θ
v
1(sj)}, ql,u,v(si, sj) = pr{Θu

l (si), Θ
v
l (sj)|Θ0

m(si), Θ
0
m(sj), m < l}, l ≥

2, u, v ∈ {0, 1}. Note that ql,1,1(si, sj) + ql,1,0(si, sj) = ql,1,+(si, sj) = ql(si). Simi-
larly, ql,+,1(si, sj) = ql(sj). Then, we can define

plm = pr{θ(si) = θ∗l (si), θ(sj) = θ∗m(sj)}
= pr{Θ1

l (si), Θ
1
m(sj), Θ

0
k(si), k < l, Θ0

r(sj), r < m}

=

8
<

:

Ql−1
k=1 qk,0,0 ql,1,0

Qm−1
r=l+1(1− qr) qm if l < mQm−1

r=1 qr,0,0 qm,0,1
Ql−1

k=m+1(1− qk) ql if m < lQl−1
r=1 qr,00 ql,11 if l = m.

,
(10)

Inspection of expression (10) reveals that the weights are determined through
a partition of the unit square. For n locations the construction is on the unit n-
dimensional hypercube and requires the specification of probabilities ql,u1,...,un , uj ∈
{0, 1}, j = 1, 2, . . . , n, where uj is an abbreviation for u(sj), at any set of locations
(s1, . . . , sn). This entails defining a spatial process which, conditionally on the
locations, has values on the simplex Q = {ql,u1,...,un ≥ 0 :

P1
u1,...,un=0 ql,u1,...,un =

1}, and also satisfies consistency conditions of the type (7), that is

ql,u1,...,uk−1,uk+1,...,un = ql,u1,...,uk−1,·,uk+1,...,un ≡
1X

uk=0

ql,u1,...,uk−1,uk,uk+1,...,un .

We specify the weight process through latent spatial processes.

5.4. A fully-specified GSDP

To generalize an SDP we can specify the foregoing components consistently if we
allow a latent process to determine surface selection, that is, the stick-breaking
components ql,u1,...,un(s1, . . . , sn) arise through probabilities associated with the
events Θ

uj

l (sj). In particular, consider the process {δΘ1
l (s), s ∈ D, l = 1, 2, . . . , },

such that at any l = 1, 2, . . ., δΘ1
l (s) = 1 if Θ1

l (s) occurs, δΘ1
l (s) = 0 if Θ1

l (s) does

not occur. In turn, suppose Θ1
l (s) occurs if and only if Zl(s) ∈ Al(s). Then, we can

work with the equivalent stochastic process defined by δ∗Al(s)
= 1 if Zl(s) ∈ Al(s),

δ∗Al(s)
= 0 if Zl(s) )∈ Al(s) where {Zl(s), s ∈ D, l = 1, 2, . . .} is a latent random

field. Furthermore, we can write

ql,u1,...,un (s1, . . . , sn) =
= pr{δΘ1

l (s1) = u1, . . . , δΘ1
l (sn) = un| δΘ1

i (sj) = 0, i < l, j = 1, . . . , n}
= pr{δ∗Al(s1) = u1, . . . , δ

∗
Al(sn) = un| δ∗Ai(sj) = 0, i < l, j = 1, . . . , n}.

It is easy to see that such a characterization guarantees that 7 is true.
We employ Gausssian thresholding to provide binary outcomes, i.e., Al(s) =

{Zl(s) ≥ 0} as in Albert and Chib (1993). This is computationally convenient and,
as a model for second stage random effects, there will be little posterior sensitivity
to this choice. Suppose {Zl(s), s ∈ D, l = 1, 2, . . .} is a countable collection of
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independent stationary Gaussian random fields with unknown (hence random) mean
µl(s), variance 1, and correlation function ρZ(·, η). It follows that

ql,u1,...,un(s1, . . . , sn) = pr{δ∗{Zl(s1)≥0} = u1, . . . , δ
∗
{Zl(sn)≥0} = un|µl(s1), . . . , µl(sn)},

because of the independence of the processes {Zl(s)} over the index l. For example,
for n = 2, we get ql,0,1 = pr{Zl(s1) < 0, Zl(s2) ≥ 0|µl(s1), µl(s2)}. If the µl(s)
surfaces are independent, l = 1, 2, ..., then so are the ql,u1,...,un(s1, . . . , sn)’s.

Since Zl(s) is assumed to be Gaussian, at any location s we obtain

ql,1(s) = pr{Zl(s) ≥ 0} = 1− Φ {−µl(s)} = Φ {µl(s)} . (11)

If µl(s) = µl, for all s, with Φ(µl) independent Beta(1, ν) then, marginally, the
θ(s) follow a DP where the marginal weights are same for each s but the marginal
distributions are not the same since θ∗l (s) )= θ∗l (s′). More generally, if the µl(s) are
such that the Φ{µl(s)} are independent Beta(1, ν), l = 1, 2, . . ., now the marginal
distribution of θ(s) is a DP with probabilities that vary with location. Spatially
varying weights have recently been considered by Griffin and Steel (2004), who
work in the framework of dependent Dirichlet processes.

5.5. Generalized finite-dimensional spatial Dirichlet Process (GSDPK).

The above GSDP is, in fact, fitted with a finite sum approximation. But now
we consider a much different construction when K is finite in 6. If the random
weights are Dirichlet distributed for any choice of n and s1, . . . , sn, i.e., pi1...,in ∼
Dir({αi1,...,in(s1, . . . , sn)}, we say that G is a generalized finite dimensional spatial
Dirichlet process, in symbols, G ∼ GSDPK(α, G0), where α denotes the measure
that specifies the αi1,...,in(s1, . . . , sn). In particular, a GSDPK is a SDPK process
if, for any choice of n and (s1, . . . , sn), αi1,...,jn(s1, . . . , sn) = 0 unless i1 = · · · = in.
We want to allow the possibility of choosing different surfaces at different locations,
but, again, as s→ s′ we want θ(s)→ θ(s′) in distribution.

Suppose we want the measure α(·) to have uniform marginals, i.e., αi(s) = α/K,
for some real constant α. Again, we illustrate in the case of two locations (s1, s2).
Let αi+(s1) =

PK
j=1 αi,j(s1, s2) and α+j(s2) =

PK
i=1 αi,j(s1, s2). To obtain uniform

marginals, we have to set αi+(s1) = α+j(s2) = α/K for any i, j = 1, . . . , K. We
can achieve this with αi,i = α/K and αi,j = 0 for i )= j (the SDPK). The choice
αi,j = α/K2, i, j = 1, . . . , K achieves independent surface selection across locations.
To take into account spatial dependence we take up ideas in Petrone, Guindani and
Gelfand (2006). Let αi,j = α E(pi,j) = α ai,j , i, j = 1, . . . , K, where the ai,j ’s are
defined so that ai = ai+ =

PK
j=1 ai,j = 1/K. Now, let H(·, ·; τ) be a distribution

function on [0, 1]2, with uniform marginals. In other words, let U = (U1,U2)
T be a

random vector such that (U1,U2) ∼ H(·, ·; τ) and Ur ∼ U(0, 1), r = 1, 2. Then, for
given K, we can partition the unit interval in the K intervals ( i−1

K , i
K ], i = 1, . . . , K,

and correspondingly consider the induced partition of the unit square made of sets
Qi,j =

`
i−1
K , i

K

˜
×

`
j−1
K , j

K

˜
, i, j = 1, . . . , K.

Therefore, we can set E(pi,j) as the probability that (U1,U2) belong to Qi,j , that is

ai,j = PH

„
U1 ∈

„
i− 1
K

,
i
K

–
,U2 ∈

„
j − 1
K

,
j
K

–«
, i, j = 1, . . . , K. (12)

Of course, marginally ai = ai+ = a+i = PH

`
U1 ∈ ( i−1

K , i
K ]

´
= 1

K . Then, αi,j =
αPH(Qi,j ; τ) and αi = α/K as desired.
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Next, we introduce spatial dependence through a “copula argument”. Let V be
say, a mean 0 GP on D with covariance function γ2ρψ(s, s′). For locations s and s′

with V = (V (s), V (s′) let U1 = Φ1

“
V (s)

γ

”
, U2 = Φ2

“
V (s′)

γ

”
and

HV (u1, u2; τ) = P (U1 ≤ u1,U2 ≤ u2)
= P (V (s) ≤ γ Φ−1

1 (u1), V (s′) ≤ γ Φ−1
2 (u2))

= Φ(2)
`
γ Φ−1(u1), γ Φ−1(u2)

´
.

(13)

The distribution function HV (u1, u2; τ) is the copula of the distribution of V . If
Q̂i,j =

`
γΦ−1

`
i−1
K

´
, γΦ−1

`
i
K

´˜
×

`
γΦ−1

`
j−1
K

´
, γΦ−1

`
j
K

´˜
, for any i, j = 1, . . . , K

then, ai,j = PHV (U ∈ Qi,j) = PV

“
(V (s), V (s′)) ∈ Q̂i,j

”
. Extension to the case of

n locations is straightforward. It is enough to consider a distribution H(·) on the
n-dimensional unit hypercube having uniform marginals coupled with the associated
n-dimensional multivariate normal, arising from the GP.

A remaining question concerns the behavior of the GSDPK as K →∞. Clearly,
the limiting behavior of the GDPK(α(K)G0(s, s

′)) for K →∞ depends on the spec-

ification of the Dirichlet parameters α(K) = (α(K)
i,j , i, j = 1, . . . , K). The limiting

behavior of the vector p(K) of the Kn random probabilities p(K)
i,j can be obtained

from results in Kingman (1975). That is, if max(α(K)
i,j , i, j = 1, . . . , K) converges to

zero and
PK

i=1

PK
j=1 α(K)

i,j → α, 0 < α < ∞, then the ordered vector of the p(K)
i,j ’s

converges in law to a Poisson-Dirichlet distribution. However, the limiting distribu-
tion depends more specifically on the behavior of partial sums such as

PK
j=1 α(K)

i,j .

Furthermore, since the support points of G ∼ GSPDK(α(K), G0) are dependent,
the limit of the random process G does not follow directly from that of the vec-
tor p(K). For instance, when the GSDPK is an SDPK it converges weakly to a
SDP with scale parameter α and base measure G0. At the other extreme, with
independent surface selection, the GDPK(α(K)G0(s, s

′)) converges weakly to a DP
with scale parameter α and base measure G0(s)G0(s

′). Finally, an intermediate
choice might be αi,i = a/k + b/k2, αi,j = a/k2, i )= j. In this case, we can show
that the GDPK converges weakly to a DP with base measure given by the mixture
aG0(s, s

′) + bG0(s)G0(s
′) (general discussion is in Petrone et al.(2006)).

6. SIMULATED EXAMPLE COMPARING SDP, SDPK AND GSDP , GSDPK

We compare the SDP and our generalizations by means of a simulated data set (see
Duan et al. (2005)). Data are generated from a finite mixture model of GPs, whose
weights are assumed spatially varying. Let Yt = (Yt(s1), . . . , Yt(sn))T , t = 1, 2..T
be a set of independent observations at a set of locations (s1, . . . , sn). Then, each
Yt(s) arises from a mixture of two GPs, G1

0,s and G2
0,s, respectively, with mean

ξi and covariance function σ2
i ρψi(s, s

′), i = 1, 2, s, s′ ∈ D, such that Yt(s) ∼
α(s)G1

0,s + (1− α(s))G2
0,s. The marginal weight is α(s) = P (Z(s) ≥ 0), where Z(s)

is a mean zero stationary GP with covariance function ρη(s − s′). Therefore, we
choose Yt(s) from G1

0,s if Zt(s) ≥ 0 or from G2
0,s if Zt(s) < 0. Since Z(s) is centered

at zero, marginally we have Yt (s) ∼ 1
2Nn

`
ξ1, σ

2
1

´
+ 1

2Nn

`
ξ2, σ

2
2

´
. However, the joint
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Figure 5: True density (lighter line −) and predictive posterior density, respectively,
under the SDP (light dotted line), the GSDP (thick dotted line) and the GSDPK models
for the simulation example in Section 6.

distribution for a pair s, s′ in D is

(Yt(s), Yt(s
′)) ∼ α1,1(s, s

′) G1
0,s,s′ + α2,2(s, s

′) G2
0,s,s′+

+α1,2(s, s
′) G1

0,s G2
0,s′ + α2,1(s, s

′) G2
0,s G1

0,s′ ,
(14)

where αi,j = P
`
(−1)i+1 Z(s) > 0, (−1)j+1 Z(s′) > 0

´
, i, j = 1, 2. Therefore, when

s and s′ are near to each other, it is very likely that Yt(s) and Yt(s
′) are from the

same component. On the other hand, if s and s′ are distant, the linkage between
Z(s) and Z(s′) is weak, so that Yt(s) and Yt(s

′) are chosen almost independently.

In our experiment, we have n = 50 random sites in a rectangle and T = 40. We
set the parameters as follows: ξ1 = −ξ2 = 3, σ1 = 2 σ2 = 2, φ1 = φ2 = 0.3, and
η = 0.3. We fit the data using the SDP, the GSDP and the GSDPK with K = 20.
To focus on the modeling of the spatial association, we assume µ(s) = 0 in 3.

In Figure 5, we plot the true density and the posterior predictive densities under
the three models for four selected locations (s26, s33, s49, s50). The values of the 40
observations at each of these 4 locations are shown along the x-axis. The nonpara-
metric models with spatially varying weights provide estimates closer to the true
densities of the model and the data. This is confirmed by the bivariate plots in
Figure 6 (locations 26 and 50 are close, 49 and 50 are far apart) where we plot the
probability contours of the true density along with the posterior distribution of the
mean for the other models. It’s interesting to compare these contours with 14. The
posterior distributions of the GSDP and GSDPK capture the expected behavior of
the true density; explicit spatial modeling of the weights enables us to capture local
details, as is also revealed by the heights of the local modes.
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Figure 6: Bivariate contour plots of the true densities and the poste-
rior distributions of the mean of the SDP, GSDP and GSDPK models for
locations 26 and 50 (a) and 49 and 50 (b). See section 6.



Bayesian nonparametric modelling for spatial data 17

7. SUMMARY AND FURTHER ISSUES

We have developed spatial Dirichlet process specifications that can be used as an
alternative to customary Gaussian process choices to model spatial random effects.
Such models provide nonstationary, nonGaussian processes that can have locally
varying DP marginals and can both marginally and jointly capture multimodalities.
We have demonstrated this with both real and simulated datasets.

In the case where the replications might be time dependent, we can embed any
of the foregoing specifications within a dynamic model. See Gelfang et al. (2005)
for the SDP case and Duan et al. (2005) for the GSDP.

Multivariate spatial process modelling using GP’s is reviewed in Gelfand et al.
(2004) but the nonparametric setting has not been addressed. Gelfand et al. ad-
vocate coregionalization (random linear transformation of independent univariate
process models). Here, coregionalization could be applied to the base measure or,
possibly, by random linear transformation of independent spatial DP’s.

Finally, as noted in the Introduction, an alternative role for this modelling is
for functional data analysis (FDA). Here, we replace geographic space, s ∈ D,
with covariate space, z ∈ Z, seeking to model a random function of z to explain
responses Y . For a collection of individuals, modelling these functions as individual-
level process realizations leads to DP’s where the atoms are random functions. In
further extension to spatial FDA, model development would use DP specifications
for both the spatial and the functional aspects of the modelling.
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DISCUSSION

NILS LID HJORT (University of Oslo, Norway)

I have followed the work of Alan Gelfand and various co-authors on Bayesian
spatial statistics over the past few years with interest. There are many aspects and
sub-themes, from detailed technicalities of modelling and simulation strategies to
the challenges of actual applications, and I very much welcome the present survey
paper.

It’s about time

We have had spatial statistics since around 1950 (starting with Bertil Matérn
and Danie Krige) and nonparametric Bayesian statistics since around 1970 (with
the early work of Thomas Ferguson, Kjell Doksum, David Blackwell and Charles
Antoniak). These brooks have grown into strong rivers, and are according to current
estimates of spatial-temporal derivatives in the process of extending themselves into
veritable floods. So it was a question of time until the twain met, and so they did:
I view the spatial Dirichlet processes of Gelfand and co-authors as among the first
serious attempts at intersecting ‘nonparametric Bayes’ with ‘spatial statistics’.

Both of these areas are inherently large, and need to be so: Nonparametrics
lives in infinite-dimensional spaces, and the ratio of the number of ways in which
variables can be dependent divided by the number of ways they can be independent
is also infinite. It would follow that the new, fledgling intersection area of ‘spatial
Bayesian nonparametrics’ also will need to grow big. In this perspective I think we
must realise that spatial Dirichlet processes, although a broadly versatile machinery,
must not rule alone, or for too long. I expect Bayesian spatial statistics to grow
healthily in many directions over the coming ten years (and beyond), and view the
spatial Dirichlet process direction as one of several.

It is perhaps unexpected that Dirichlet processes should turn out to be such a
broadly flexible tool also in spatial contexts. Perhaps parallel developments may be
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expected in the model world of Gaußian and nearly Gaußian processes. Consider
the basic application example of Gelfand, Guindani and Petrone, which takes the
form

Yt(s) = µt(s) + θt(s) + εt(s) (15)

for modelling say monitoring stations over time, at time points t1, . . . , t40 and spatial
positions s1, . . . , s45, where µt(s) is trend, εt(s) is white noise, and θt(s) is the main
spatial object. I wish to express a modicum of polite surprise that statisticians
after staring at (15) for a while would say, “Of course! Dirichlet processes!”. But,
apparently, they do. I would expect there to be alternative fruitful models, e.g. built
around Gaußian processes or relatives.

For a given spatial correlation function, giving rise to an n× n variance matrix
for θ(s1), . . . , θ(sn) of the form σ2Σn(φ), say, the pure Gaußian model amounts to

0

B@
θ(s1)

...
θ(sn)

1

CA = σΣ(φ)1/2

0

B@
N1

...
Nn

1

CA (16)

in terms of independent standard normals. There are several ways in which non-
parametric envelopes, or sausages, can be built around the normal, with a parameter
dictating the degree of concentration around the given normal distribution. Thus
different forms of spatial nonparametric models would emerge by taking

N1, . . . , Nn ∼ envelope(N(0, 1); δ),

in concert with (16). Here δ indicates some parameter that governs the tightness
around the standard normal. It would be interesting to have such modelling at-
tempts contrasted with those of Gelfand et al., see also Gamerman et al. (2007).

Different versions of spatial Dirichlet processes

How can one make two Dirichlet processes G and G′ dependent? Suppose both of
them are required to have parameters aG0, say. Again, there must be several differ-
ent fruitful ways of achieving this. Gelfand et al. work with the Tiwari–Sethuraman
representation, where

G =
∞X

j=1

pjδ(θj) and G′ =
∞X

j=1

p′jδ(θ
′
j),

say, where the {θj} sequence needs to be i.i.d. from G0, as does the {θ′j} sequence.
One class of models emerges by keeping pj = p′j but allowing dependence between
θj and θ′j ; cf. MacEachern’s (2000) early work that set off some of the later develop-
ments. One may also simultaneously work with dependence between the {pj} and
{p′j} sequences. In the usual set-up,

pj = q̄1 · · · q̄j−1qj and p′j = q̄′1 · · · q̄′j−1q
′
j ,

with qj ∼ Beta(1, a) and q′j ∼ Beta(1, a), writing q̄j = 1 − qj and q̄′j = 1 − qj . A
natural recipe is now to take

qj = Beta−1(Φ(Nj), 1, a) and q′j = Beta−1(Φ(N ′
j), 1, a),
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where the (Nj , N
′
j)s are independent pairs, but with internal correlation ρ. This

creates two dependent Dirichlet processes, with dependence both from θj to θ′j and
from pj to p′j , and the construction is easily generalised to full random fields, via
normal processes. Here Beta−1(q, 1, a) is the inverse of the cumulative distribution
function Beta(x, 1, a) for the Beta(1, a) distribution.

A different construction that also looks fruitful on paper is as follows. Let

G =
KX

j=1

pjδ(θj) and G′ =
KX

j=1

p′jδ(θ
′
j),

for a moderate or large K. As long as

p ∼ Dir(a/K, . . . , a/K) and p′ ∼ Dir(a/K, . . . , a/K), (17)

it is known that G and G′ converge in distribution to the Dir(aG0) process; see
discussion about this in Hjort (2003). The problem is therefore to make p and
p′ dependent without losing (17). Here one method is to define pj = Aj/A and
p′j = A′j/A

′, where A and A′ are the sums of Ajs and A′js, respectively, and where

Aj = Gam−1(Φ(Nj), a/K, 1) and A′j = Gam−1(Φ(N ′
j), a/K, 1),

and again corr(Nj , N
′
j) = ρ. Here Gam−1(q, a/K, 1) is the quantile inverse of the

distribution function for a Gam(a/K, 1) variable. Other copulae (also called ‘the
emperor’s new clothes’, see Mikosch, 2007) can also be employed here.

One might also contemplate versions of this where only the biggest Dirichlet
process jumps are allowed to enter the approximations, say

G =
KX

j=1

bjδ(θj)

ffi KX

j=1

bj ,

where b1 > · · · > bK are the K biggest jumps in a Dir(aG0) process. This is
moderately awkward, but doable, via results in Hjort and Ongaro (2006).

Is the spatial component really required?

This section title is not meant too provocatively, since I of course acknowledge that
the spatial part of the model often needs to be there. But I wish to have in the
toolbox various checks and tests for helping me decide whether I need the spatial
component θt(s) in (15) or not. It is important to realise that in (15), both zero-
mean terms θt(s) and εt(s) change values and interpretation with what we put into
the trend part µt(s). Specifically, adding one more clever covariate with strong
explanatory power will sometimes carry enough spatial information to make θt(s)
become too small in size to really matter. I do suppose Gelfand et al.’s machinery
can give me π(σ | data) relatively easily, about the standard deviation of the θt(s)
part, or perhaps even more informatively the joint posterior of (σ, τ). But it would
be nice to have a formalised procedure specifically for answering the question ‘can
I just as well set θt(s) to zero?’ for each given application. This could perhaps be
in the form of a post-processed posterior predictive p-value, as in Hjort, Dahl and
Steinbakk (2006), or via a suitable Bayesian test, as in Rousseau (2007).
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There might be Bernshtĕın–von Mises theorems to prove in these models, to the
effect that with enough data things will go very well and different Bayesians will be in
decent agreement a posteriori. Very often there would not be overwhelmingly much
data, however, particularly in view of the somewhat evasive character of parameters
relating to spatial correlation. This is an argument for being very careful with the
prior construction. Gelfand et al. use reasonably generic prior descriptions, but they
seem to consistently take σ (noise level for θt(s)) and τ (noise level for the white
part εt(s)) as independent. This worries me, since it would clash both with Jeffreys’
type priors and with other work about setting priors in variance component models?

Side effects

Bayesian and empirical Bayesian constructions are often successful in terms of
achieving better overall accuracy of predictions, better average precision for estimat-
ing a flock of parameters, etc. This is achieved by intelligent amounts of smoothing
and shrinking. There are sometimes less fortunate side effects, however; one might
more easily miss ‘alarm situations’ and anomalies, which in many practical appli-
cations would be of great concern, e.g. for pollution monitoring. Or are there good
fixes by setting up suitable loss functions, to be combined and assessed from the
posterior calculations?

The last point I wish to make is that there is a potential problem with the
Dirichlet process as the basic Lego building block in these contexts, related to the
two roles of the ‘a’ parameter in the Dir(aG0). As we know, the size of a seriously
influences two different aspects of the distribution, (i) the degree of tightness around
its prior mean G0, and (ii) the level of clustering in repeated samples from G. These
are not quite reconcilable. This might point to the need for extending the infinite-
dimensional prior processes with one more parameter.

STEVEN N. MACEACHERN (The Ohio State University, USA)

The authors have written a stimulating paper that introduces a new element
to models based on dependent nonparametric processes. A selection surface allows
some portions of a realized surface to come from one component of a mixture and
other portions of the realized surface to come from other components of the mixture.
This innovation generates tremendous flexibility for modelling and will prove useful
in many applications.

The description of a formal hierarchical model often lends additional insight to
a modelling effort. The subsequent description (at the risk of modestly warping
the authors’ model) casts the model in a more traditional framework. In doing so,
connections to existing processes are seen, and the importance of qualitative features
of the selection surface become apparent.

The authors write the model (3) at the observed sites as

Y (s) = µ(s) + θ(s) + ε(s).

This can be divided into three portions–one portion that is far-removed from the
data, a second portion that provides the guts of the model and a third portion that
connects the model to the data. The model includes a potential regression structure
for µ(·), including dependence on covariates, and it allows for distributions on hy-
perparameters that govern this regression structure. This is essential for modelling,
although not the focus of this work.
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The middle of the hierarchical model consists of a dependent nonparametric
process. To generate the SDP or the GSDP, this mid-level process is a depen-
dent Dirichlet process (DDP) as defined, for example, in MacEachern (2000). The
DDP is defined by two countable sets of independent and identically distributed
stochastic processes. The first set of processes is for the locations: Here, θ∗(·),
with θ∗1(·), θ∗2(·), . . . a random sample of these processes. These θ∗l (·) lead directly
to θ∗l (s) for vectors of sites in D through the usual finite-dimensional specifications
(although there is often little loss in thinking of the entire surface, θ∗(·) as having
been realized).

The second set of processes determines the probabilities associated with the
locations. Following MacEachern (2000), V (·) follows a stochastic process where
V (s) is distributed as Beta(1, M) with M > 0 a mass parameter. From the sur-
faces V1(·), V2(·), . . ., and following Sethuraman (1994), arithmetic takes one to the
p1(·), p2(·), . . .. Again, Vl(s) is a finite dimensional realization from Vl(·). The
choices for the distribution on V (·) are endless. A convenient choice for V (·) maps
a Gaussian process with standard normal marginals into the Beta(1, M) with a pair
of transformations. Provided the covariance function of the Gaussian process allows
V (s) )= V (s′), this produces the “multivariate stick-breaking” that is needed to en-
sure independence of the random distributions at s and s′ (or independence in the
limit) s and s′ become distant.

At this point, the middle stage of the model is a DDP. The DDP includes
multivariate as well as univariate θ∗(·) (DeIorio et al., 2004). It can be specialized
(e.g., Vl(s) = Vl for all s and all l results in the single-p DDP which falls under
Sethuraman’s definition of the Dirichlet process), or it can be generalized to DDPs
with spatially varying mass parameters (see MacEachern, 1999) or, more generally,
to a wide variety of dependent nonparametric processes (for example, Hjort, 2000,
or MacEachern, Kottas and Gelfand, 2001). In essence, the DDP and its variants
describe distribution-valued stochastic processes indexed by covariate values, in this
case the spatial location, s.

The final stage of the model presents the novelty. It consists of a likelihood to
smooth out the discreteness inherent in mixture models, and it includes a “selector
surface”. The selector surface is driven by a latent process. Under one view, the
surface, say U(·), has the property that U(s) is uniformly distributed on the interval
(0, 1) for each s. The value of U(s) determines which component of the mixture
is active at site s through the rule that assigns the site to component k if bothPk

l=1 pl ≥ U(s) and
Pk−1

l=1 pl < U(s). Alternatively, one can pursue an approach
whereby spatial regions are assigned to mixture components successively. A latent
surface, Z1(·), with appropriate marginal distribution at site s, is compared to the
cutoff determined by V1(·) at the same site, s. If Z1(s) ≤ V1(s), the site is assigned
to the first component of the mixture; if Z1(s) > V1(s), the site is not assigned to the
first component of the mixture. A similar process unfolds for further components of
the mixture, with comparisons of Zl(·) to Vl(·). It is evident that the latter approach
has several advantages over typical implementations of the former approach.

The selector surfaces have many interesting implications. If there is no variation
in either V (·) or Z(·) across sites, the model reduces to the SDP model, a version of
the single-p DDP model, and also a version of the Dirichlet process. If the realiza-
tions of V (·) and Z(·) show variation and are relatively smooth, one would expect
to find edges, where there would be a nice curve separating one mixture compo-
nent from another. If the realizations are very jagged, one would expect “transition
zones” without a clean jump from one component to another. In these zones, one
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would expect many switches back and forth between components. With the struc-
ture of the mixture model, where θ∗l (s) and θ∗l′(s) will typically be very different,
one would expect discontinuities at the transition between mixture components.
Properties such as clean breaks in the surface or transition zones are important in
applications such as image analysis, where one typically searches for the edges (clean
breaks) in the surface and expects discontinuities at these edges. Nicely, the authors’
pursuit of the approach with the Z(·) rather than the U(·) approach with continuous
spatial paths avoids the problem of always moving to adjacent components when
switching from one component to another.

I would like to make a plea to the authors and to others working in the area to
refrain from overloading notation, as is sometimes done for the Dirichlet process.
For the Dirichlet process, the time-honored tradition (see Ferguson’s early work, for
example) uses the symbol α for the base measure. With respect for this tradition,
and adapting notation to the spatial setting, α would represent a common (across
sites) base measure while αs would represent the base measure at the site s. Making
use of an already taken symbol to represent a different quantity can only lead to
confusion and make reading the literature more difficult for those entering the area.
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REPLY TO THE DISCUSSION

We appreciate the positive comments from Hjort and MacEachern and agree that,
because there are so many ways to bridge spatial process modelling and Bayesian
nonparametric modelling, we can expect to see growth in various directions in the
near future.

A key point that we feel needs to be made in this rejoinder is the distinction
in perspective and perhaps in specification, between MacEachern’s DDP’s and our
SDP’s. The issue centers on concern with joint or marginal models.

MacEachern’s DDP in the spatial setting specifies the distribution of θ(s) as
Fs, i.e., a collection of random distributions indexed by spatial location. Focusing

on the random distributions Fs1 and Fs2 , we have vl =

„
vl(s1)
vl(s2)

«
, l = 1, 2, ..

⇔ pl =

„
pl(s1)
pl(s2)

«
, l = 1, 2, ... and {θ∗l } where θ∗l =

„
θ∗l (s1)
θ∗l (s2)

«
and Fsj ⇔

{pl(sj)}, {θ∗l (sj)}, j = 1, 2. Immediately, we can see that Fs1 and Fs2 come from a
DP. If the components of vl and θ∗l are dependent then Fs1 and Fs2 are dependent.
But what about the joint distribution of θ(s1) and θ(s2)? If we assume conditional
independence given Fs1 and Fs2 , as in, e.g., Cifarelli and Regazzini (1978), we
have P (θ(s1) = θ∗l (s1), θ(s2) = θ∗l′(s2)) = pl(s1)pl′(s2) with marginal dependence
through mixing. Introducing dependence for the v’s and θ∗’s across s, s ∈ D is
straightforward, e.g., suppose we have vl(s) = G−1(Φ(Zl(s))) where G−1 is the in-
verse Beta(1,α) c.d.f., Zl,D are iid realizations from a mean 0 GP and, independently,
the θ∗l,D’s are iid realizations from a GP. Indeed, this strategy is also mentioned by
Hjort along with a different construction using transformation of a Gaussian process
to gamma variables.
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Amplifying MacEachern’s subsequent suggestion, suppose we introduce a usual
stickbreaking, {vl} ⇔ {pl}. Additionally, ZD a mean 0, variance 1 GP realization
yields U(s) = Φ(Z(s)).

P (θ(s1) = θ∗l (s1), θ(s2) = θ∗l′(s2))

= P (U(s1) ∈ (
Pl−1

j=1 pj ,
Pl

j=1 pj), U(s2) ∈ (
Pl′−1

j=1 pj ,
Pl′

j=1 pj))

= P (Z(s1) ∈ (Φ−1(
Pl−1

j=1 pj), Φ
−1(

Pl
j=1 pj)), Z(s2)

∈ (Φ−1(
Pl′−1

j=1 pj), Φ
−1(

Pl′

j=1 pj))
≡ pl,l′(s1, s2).

Evidently, we are constructing joint distributions as opposed to adopting the con-
ditional independence assumption above. However, it is still the case that F (θ(s))
comes from a DP.

Then, we come to the GSDP. Here, we introduce iid copies {Zl,D} of a GP with
mean µD to create

pl,l′(s1, s2) = P (Zj(s1) < 0, j < l, Zl(s1) > 0, Zj(s2) < 0, j < l′, Zl′(s2) > 0).

We need µD to be random in order that the p’s are and if µ(s) varies with s, pl(s)
varies with s. Again, we are constructing joint distributions.

Finally, the GSDP-k introduces ZD ⇔ UD = Φ(ZD). Now, l, l′ = 1, 2, ...k and

{pl,l′(s1, s2} ∼ Dir({al,l′(s1, s2)})

with

al,l′(s1, s2) = P (U(s1) ∈ ( l−1
k , l

k ), U(s2) ∈ ( l′−1
k , l′

k ))

= P (Z(s1) ∈ (Φ−1( l−1
k ), Φ−1( l

k )), Z(s2) ∈ (Φ−1( l′−1
k ), Φ−1( l′

k ))).

We see that automatically {pl(s)} varies with s by the random selection from the
Dirichlet. Again, by definition, we are constructing joint probabilities for surface
selection, hence joint distributions.

Next, we take up Hjort’s discussion around his expression (2). Caution is needed
here; (2) provides the joint distribution for a set of n locations under a GP but this is,
in fact, a property of the GP. In general, for a given collection of locations, starting
with i.i.d. random variables from some distribution, say f , using (2) produces a
joint distribution. However, outside of the normal (or mixtures of normals), such
transformation need not uniquely determine finite dimensional distributions. Hence,
in general, we can not use (2) to define a process.

One aspect MacEachern helps to illuminate is the nature of the expected surface
selection. However, we confess to being unclear as to his concern about “moving to
adjacent components” with the U(·) approach. The Z(·) approach will tend to yield
similar adjacent selection with regard to the θ∗l ’s. Moreover, with the independence
of the θ∗’s across l, why is this a worry?

Hjort raises some general issues regarding spatial process modelling (that are
apart from the nonparametric aspect). First, he questions the need for the spatial
component in the model. Here, he joins the ongoing debate regarding the mean-
covariance trade-off - the size of the mean specification will, for a given dataset,
determine the need for spatial random effects. Next, he expresses concern about
prior assumptions. Here, we face the usual issues of parameter independence, choice
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of parametrization, identifiability of parameters, etc. Then, he raises the matter of
smoothing away potentially interesting extremes in the spatial surface. Here, there
are, in fact, two issues. One is the inherent smoothness associated with spatial
process realizations under customary covariance functions and its impact with regard
to spatial interpolation. The second is how, in particular, a Bayesian implementation
of such interpolation imposes smoothness. Lastly, the dual role for the precision
parameter in the DP is important to note. Here, we would see the issue as being
distinguished by whether we mix or not, whether we introduce random effects or
not. Without mixing, as in say customary Bayesian bioassay examples (see, e.g.,
Gelfand and Kuo, 1991), we would be looking at the DP through Ferguson’s original
perspective whence the precision parameter really is intended to reflect proximity
of the random DP realization to some baseline CDF. Under mixing, interest turns
to the random effects which, seen through the stickbreaking perspective, encourage
clustering of individual observations into common populations. Furthermore, we
can enrich the stickbreaking specification beyond a single precision parameter as we
alluded to in generalizations above our expression (2) and also in Section 5.5.

Finally, we thank the discussants for their thoughtful input. Practical use of spa-
tial and spatio-temporal models requires care in implementation and interpretation.
Adding a nonparametric aspect certainly exacerbates this requirement.
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